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Flight Networks Brain networks

* Graphs : mathematical structures to model pair-wise relations

o Nodes: airports in flight networks, neurons in brain networks
o Edges: flight paths between airports, roads between intersections

o Nodal features: weather in airports, types of neurons (sensory/motor)
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Graphs Machine Learning Algorithms

e Extract information encoded in the graph data
* Facilitate understanding on information over network graphs

* Gain benefits on various predictive tasks.

* Who are potential
friends?

Which item will
this customer buy?

Which loan
applicant is with
the lowest risk of
debt default?

Algorithms
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Unfairness in Machine Learning

* ML algorithms may lead to unfair results

o Different error rates on female/male faces in face recognition

o Different crime prediction accuracy based on ethnicity - sgp glas
I'E]il;slce @
o Different credit approval rates based on gender /ﬁ\ ﬁ @
] Measurement
Bias

"""" &

Algorithm

 Critical for various applications and policy making Bias

R T—ro Exclusion
T T O Bias
&s—:zt—_gcz.—.s?—l 2 ;‘\

« Extensive literature on (non-graph) bias/unfairness reduction in ML

o e.g.[Zafar et. al., 2015][Du et. al., 2020][Zhang et al 2020][Dutta.et al., 2021]
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Group fairness Notions

e Statistical Parity: considers achieving the same positive rate for
individuals in different sensitive subgroups.

Asp = |P(V =1|S=0) - P(VY = 1|5 =1)|

* Equality Opportunity: the same true positive rates are enforced between
sensitive subgroups

Apo = |P(Y =1|S=0,vy =1)=PF =1|S=1,V = 1)

* Smaller Asp and Ar, are more desirable
e Key intuition: Decision making uncorrelated with sensitive attributes
* Generalizable to graph domain

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." InNeurIPS, 2016.
[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." InNeurIPS, 2016.
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Potential Unfairness in Networks
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exhibit divergence between genders [, resource allocation in power grids!23!

[1] Stoica, Ana-Andreea, et al. “Algorithmic Glass Ceiling in Social Networks: The effects of social recommendations on network diversity.” In WWW 2 018.
[2]. R. Du, D. Muthirayan, P. P Khargonekar, Y. Shen, "Long-term Fairness For Real-time Decision Making: A Constrained Online Optimization
Approach" IEEE Transactions on Neural Networks and Learning Systems, accepted Oct 2024.

[3] R. D, and Y. Shen. "Fairness-aware User Classification in Power Grids." 2022 30th European Signal Processing Conference (EUSIPCO). IEEE, 202
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Unfairness in ML over Graphs

* Graph structure has intrinsic bias
* Higher probability for the connections between similar users(religion, ethnicity)

Learning over graphs amplifies already existing bias

Indirect use of sensitive
attributes in training!

Information aggregation over neighbors in GNNs —

Fairness is in graph domain.

* Random walk-based: [Rahman et al., 2019] & ;'..‘.'." B
* Fairness constraints: [Zafar et al., 2019] : ;'i- .
* Adversarial regularization-based: [Dai & Wang, 2020] '.'}'~ "5

* Individual fairness [Xu et al 2023], graph cut [Dinitz et al 2022]'

' 1 L ] . 8 ; % ‘ /
‘Q ’ . Wy . ; s
. {

Theoretical understanding is largely missing, j é
and mostly designed for specific learning tasks R d -‘
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Unbalanced Real Network Topologies

e Pokec datasets:

Facebook-like real social networks

Dataset Pokec-z | Pokec-n
# Nodes 7659 6185

# Nodes with S=0 4851 4040

# Nodes with S=1 2808 2145

# Edges 29476 21844

# Features 59 59

# Intra-group edges | 28336 20901

# Inter-group edges | 1140 943

]- Severely unbalanced edges -2 potential bias

* Higher probability for the connections between similar users (religion, ethnicity)
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Graph Neural Networks

Question: Can we explain the source of bias?

* Graph neural networks: H' = ¢(D (A + )H'"'W'™1)

Aij =1 ifnodes i é@] corwecTedT((DLﬁ Zjej\/‘i hé_l)Wl_l)

D € RV*N . degree matrix

W' : weight matrix "

. 1 LG h: G
o(.) :non-linear act | ™"

H' . trained node r A
HO — X ¢ RNXF

Ni neighbor set ¢ []inter-edges 55 0
intra-edges s=1
EI -s 0 |§|s—

VA D_l(A +I)H"* : aggregated represeiiauun
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Source of Bias

* |ldea: measure the correlatlon between aggregated representation Z: ; and
sensitive attributes s € R

»  Approach : Bound ||p||1 with p; = Corr(z. ;,s) fori={1---F}

/heorem. Ilpllx < [lell (13]1 max(1,72) + 2N ) I

features for node n set of nodes with sensitive attribute j

‘_I_‘ .
O 0:=py— Uy IJJj::EhnNUr;;‘ne‘Sj]a .7:{071}

nodes with at least one inter-edge nodes with no inter-edge
\‘g’q |S¥| ST
Number of inter edges of node m
=

. X
O 79 = |1 —2min (mean (cﬂ,jwwm C 80) , mean (d%erw v, € 31))‘

-
intra edges of nodem

0. D. Kose and Y. Shen, "Demystifying and Mitigating Bias for Node Representation Learning®, accepted to IEEE Transactions on 10
Neural Networks and Learming Systems, April 2023.
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Fairness-Aware Augmentation Design

+ Goal: Design augmentation strategies G(V,E) = G(V,€) and X — X to
reduce ||p||1

features of node n set of nodes with sensitive attribute j
A A .
0 1= [y — Uy B = En,~v xn |7 €8;], j=1{0,1} L feature masking

Nodes with at least one inter-edge no inter-edge

'_I_‘ .
Y1 = ‘1 _ ||§(a _ ’|§i1<|‘ Sj — 8;( U S;‘J?] — {O, 1} node samplmg

# inter edges of node m
—

. X X
Yo = ‘1 — 2min (mean (d%dfdw [V, € So) , mean (d%‘ffdw v, € 81)) ‘}
—

intra degree of node m

edge augmentation

11
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Node Classification

* Performance metric: Accuracy, Area Under the Curve(AUC)

* Fairness metrics: -
prediction class label

) —Pg=1]s=1)

true class label

statistical parity: Agp = |P(y =
. N . —
equal opportunity: Apo =|P(J=1|y=1,s=0)-P(g=1[y=1,s=1)

e Datasets: Real social networks

Dawset  |Sg| Sl IS¢l ISYL [€X] €5, [€S) ]

Pokec-z 622 4229 582 2226 1730 23428 15942
Pokec-n 423 3617 479 1666 1422 18548 10672

12
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statistical parity

Node Classification Results
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* Lower right -> better

* All green tones for fairness-aware baselines

Our framework always outperforms state-of-art baselines!
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Challenge: Preprocessing/augmenting data causes loss
of useful information that cannot be retrieved in training

Idea: Fair normalization as in-processing

14
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* Theoretical Analysis: bias in GNNs related to distributions of representations
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Embedding Dimension 2

Fair node embeddings

Idea: shift group-wise distributions in each layer to reduce unfairness
Approach: Fairness-aware group-wise trainable batch normalization

O. D. Kose and Y. Shen, “FairNorm: Fair and Fast Graph Neural Network Training,” Transactions on Machine

Learning Research (TMLR) May 2023.

15
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Multiple Group-wise Normalization

* Key Idea: Apply trainable normalizations over different sensitive groups

() _ (), (n)

M-Norm (CL?(,Z)> = f}/fn) . %ij z % + Bz(n)

O

* Normalization is applied after linear transformations

H(™ = Act (M-Norm ™) (WHQ)™))

Acts as a preconditioner, provides provably faster convergence

O. D. Kose and Y. Shen, ” Fast&Fair: Training Acceleration and Bias Mitigation for GNNs”, accepted by Transactions oht
Machine Learning Research (TMLR) May 2023.
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Node Classification Results

Statistical Parity
Asp=[P(g=1[s=0)-PH=1]|s=1)

Pokec-z
* Lower right -> better
* Green tones for fairness-aware baselines s-
[ ]
® NoNorm £ °]
& M-Norm %
® Covariance B4
Adversarial E
FairGNMN 2 .
¢ HTR DDP
& FairNorm 0

T
70.3 0.4 70.5 0.8 T0.7
BCCUFECY

17



UCI Samueli

School of Engineering

Le o
30,9 a 59.9
g E g
£o7 £ £o
E —— NoNorm gus —— NoNorm g 0.6 —— NoNorm
o8 —— GraphNorm —— GraphNorm —— GraphNorm
—— FairNorm 05 —— FairNorm a5 —— FairNorm
o 0 200 400 600 800 1000 o 200 400 600 800 1000 0 200 400 600 80O 1000
Epochs Epochs Epochs
(a) Convergence speed for (b) Convergence speed for Pokec-z (c) Convergence speed for
Pokec-n (ReLU) (ReLU) Recidivism (ReLU)
16 1.0 0.9
ED,E E 0.9 E 0.8
E 0.8 zj 0.8 g o7
g 0.7 g o7 g 0.6
E 06 —— NoNorm E 0.6 —— NoNorm E 05 —— NoNorm
—— GraphNorm —— GraphNorm —— GraphNorm
05 —— FairNorm 05 —— FairNorm 0.4 —— FairNorm
] 200 400 600 800 1000 o 200 400 600 800 1000 9 200 4o0 600 800 1000
Epochs Epochs Epochs
(d) Convergence speed for (e) Convergence speed for Pokec-z (f) Convergence speed for
Pokec-n (Sigmoid) (Sigmoid) Recidivism (Sigmoid)

Figure 1: Convergence speed for different graph data sets when the normalization is not applied
(Nonorm) and applied with/without fairness consideration (FairNorm/GraphNorm).

Provably faster convergence than NoNorm.

O. D. Kose and Y. Shen, "FairNorm: Fair and Fast Graph Neural Network Training,“ Transactions on Machine Learning 18
Research (TMLR) May 2023.
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Fairness-aware Graph Filtering Design

* Idea: Design Graph filter to filter out the bias
* Analysis: Graph frequency domain correlation with bias
e Approach: Filter out graph frequency that are correlated with bias

G: Input Graph

il

i
X ;g X H! S iR
> —> GNN [ | GNN R
X _>y
; Fair Graph Layer _, air Graph? LR
[j A Filter A Al Filter
i '

* Filter is pre-computed, no modification in training
o Can be used as pre-trained bias mitigation operators before GNN layers

o Analogy to batch normalization layers

D. Kose, G. Mateos, and Y. Shen, “Fair Graph Filter Design", 57th Asilomar Conference on Signals, Systems, and Computers. I%gE 2023.
D. K

0.
O. ose, G. Mateos, and Y. Shen, “Fairness-aware Optimal Graph Filter Design”, JSTSP, 2024.



N UCI Samuell

(S School of Engineering

Question: What if we do not want to share real training data?

Idea: Graph generative models come to rescue!

20
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Generative Models Amplify Structural Bias

Create synthetic graphs with a SOTA diffusion model, GraphMaker [Li et al., 2023]

Cora Accuracy (%) Asp(%) Aro(%)

G 94.92 27.71 11.53
GraphMaker 87.29 +1.09 35.72+1.74 13.27 £ 0.81
Citeseer Accuracy (%) Agp(%) Aro(%)

G 95.76 29.05 9.53
GraphMaker 92.194+1.06 37.56+1.29 13.52+0.92
Amazon Photo Accuracy (%) Asp(%) Aro(%)
g 96.91 32.58 8.24
GraphMaker 94.45 £0.21 33.491+0.28 10.01 £0.56
Amazon Computer  Accuracy (%) Agp(%) Agro(%)
G 96.14 22.90 4.63
GraphMaker 94.04 £0.26 23.56 =0.55 6.23 £ 0.49

Using generated graph

increases unfairness!

21
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Sources of Structural Bias

4 N
Theorem:

1i:—p® x
F"::J _ Pf 'E.I]_{j o — E:ri,u}' EW ""1"-.7 — Pk _EPF.: . PE
1Skl N—|Sk| 2 N—=|Sk| EM

Agpoc ap:=

J

x L 1 oo
Py = EviESk:Uj ESk Aiei‘-' Py = ZUiESbUiESR A"‘j

E[# inter-edges] E[# intra-edges] Stochastic
graph view

Os=0 — intra-edges
®s=1 ---- inter-edges

Intuition: balance between inter/intra-edges is desirable

O. D. Kose and Y. Shen, "FairWire: Fair Graph Generation®, accepted to NeurlPS 2024 22
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Novel Fair Regularizer Design

4 N
Theorem:

1. i by
F"::J _ Pf ﬂ..-ﬂ_{j o — E:ri,u}' EW ""1"-.7 — Pk _EPF.: . PE
Skl — N—=[Sk] 2 N=[8k] Sk ]

Agpoc ap:=

\_ J

Proposed Regularizer:

One-hot representation for sensitive attributes
Batch of nodes

1

~ v A@ Se.)(Se. )" N o A@ Se 1—(Se T Ny
Lrainwire (A, B) :== S0 Soposen(A0(Ser)(Ser) ), X, ., es(A0(Ser)(1-(Ser) "),

|Sk| N —|Sk|

Allows a minibatch application

* Can be applicable to any model outputting probabilities for edges in graph
o GNN training for link prediction
o Graph generative models

O. D. Kose and Y. Shen, "FairWire: Fair Graph Generation®, accepted to NeurlPS 2024 23
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FairWire: Fair Synthetic Graph Generation

* FairWire: a diffusion model for graph generation together with sensitive attributes
* Generate graphs with similar distribution to original G alleviated structural bias
e Allows fair model training without sharing sensitive information

Noise addition

A

Discrete Noise in terms of edge deletion/additions

Gt T e G
t
%o, % e

o :O .0‘? r .

ICross-cntropy + EFs.irWire (A,B)

b9(G") -
G

Denoising model parameterized by 6

| o

Denoising 24
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Experimental Settings

e Results obtained over 6 real-world datasets

Dataset V| |€] F K

Cora 2708 10556 1433 7
Citeseer 3327 9228 3703 6
Amazon Photo 7650 238163 745 8
Amazon Computer 13752 491722 767 10

Credit 1000 22242 27 2
Pokec-n 6185 21844 59 2

* Fairness metrics:

Node classification

y=14s=1)|
model r‘>_r'e_(':lictions labels

X X 3 set of intra-
Asp=|P({g=1lee&X)—P(g=1|e€&?) edges
Apo=|Ply=1|y=1ecé&X)—Pyg=1|y=1,ec &)

Link prediction

set of inter-edges 25
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Graph Generation Evaluation

* Link prediction and node classification models trained on generated graphs

* Evaluated on same real graphs
Link Prediction

Cora Citeseer
AUC (%) Asp (%) Ago (%) AUC (%) Asp (%) Ago(%)
g 94.92 27.71 11.53 95.76 29.05 9.53
Q~ 87.29+1.09 35.724+1.74 13.27+0.81 92.194+1.06 37.56+1.29 13.52 +0.92
FairAdj 82.13 +1.07 15.47 + 2.39 6.26 + 2.05 82.67+2.78 15.45 4+ 2.68 7.98 +1.47
Adversarial 83.66 & 5.64 16.35 4+ 9.80 7.82+5.84 89.59 4+ 2.70 24.20 £+ 5.82 10.34 £+ 1.66
FairWire 86.49+ 279 1291 +6.35 4.31 4 3.59 91.27 + 2.78 18.35 +6.91 7.80+ 2.76
Node Classification
German Pokec-n
Acc (%) Asp (%) Ago (%) Acc (%) Asp (%) Ago(%)
g 70.00 2.13 1.78 68.73 8.58 9.68
FairGen 73.60 28.71 15.34 51.73 0.00 0.00
(5‘ 68.92+2.37 2.61+5.83 2.29+ 5.06 66.19 + 2.05 3.63 + 2.58 2.66 + 2.50
FairAdj 70.08+1.08 2.17+4.49 1.11+£2.24 - - -
Adversarial 70.00+£0.62 1.57+2.70 1.34+28 69.361+0.70 2.16+1.73 2.73+2.01
FairWire 69.76 = 0.51 0.63+1.53 0.30+0.61 68.23=x+0.45 1.91+£0.92 1.35=+0.92

Achieves better fairness/utility trade-off compared to fairness-aware baselines

26
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Conclusions

* Theoretical analyses for the sources of bias in multiple GNN frameworks

* Fair Model Designs: Multiple fairness-aware strategies: augmentation,
normalization.

o Applicable in different stages of learning (pre-processing, in-processing)

* Fair Graph Generation:
o Diffusion-based fairness-aware generative framework
o Enables private fair model training without sharing sensitive information

* Experimental results on real-world datasets validate the improvements in
fairness measures with similar utility

27
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