

www.barzellab.com

Network GPS – Navigating network dynamics Baruch Barzel Bar-Ilan University

מערך הסייבר הלאומי - מערך הסייבר הלאומי National Cyber Directorate - Prime Minister's Office

Ministry of Science, Technology and Space

2003 NORTHEAST BLACKOUT

 5.5×10^7 People affected 10^2 Fatalities 6×10^9 USD in damages

Crucial role of networks

Going beyond mapping

Going beyond mapping

The challenge of networks

- Low dimensional
- Symmetric structures (lattice or lattice-like)

Finite dimension: $\langle d \rangle \sim \sqrt[Dim]{N}$

Degree distribution: bounded $P(k) \sim e^{-k}$

Hamiltonian dynamics

Where real networks are:

- Disordered and weighted (for now: positive)
- Heterogeneous Hubs and small nodes

Small world (infinite dimension): $\langle d \rangle \sim \log N$ Degree distribution: scale free $P(k) \sim k^{-\gamma}$ Nonlinear dynamics (sometimes hidden)

Dynamics layer

 A_{ij} Weighted, directed topology $x_i(t)$ Concentration, Infection probability, Species abundance M_0, M_1, M_2 Intrinsic nonlinear

interaction mechanisms

Gao, Barzel, Barabási. Nature 530, 307 (2016) • Barzel, Barabási. Nature Physics 9, 673 (2013)

Dynamics layer

Gao, Barzel, Barabási. Nature 530, 307 (2016) • Barzel, Barabási. Nature Physics 9, 673 (2013)

Bringing networks to life

patterns of information spread

Information flow in complex networks

Response patterns to fixed-point perturbations

Nature Comm. 6, 7186 (2015) • Nature Physics 9, 673 (2013) • Nature Biotech. 31, 720 (2013) • Phys Rev E 80, 046104 (2009)

Information flow in complex networks

- When $T(j \rightarrow i)$
- Where $l_{ij}(t)$
- How strongly Δx_i
- How $(\mathcal{F}_i, \mathcal{F}_{ij})$

Spatiotemporal propagation

Identical networks yield visibly distinct propagation patterns

Interaction mechanisms

Interaction mechanisms

Taming the zoo of propagation patterns

$$au_i \sim k_i^{ heta}$$

A node's intrinsic response time scales with its weighted degree

Why should you care?

Universal $au_i \sim k_i^{ heta}$ heta=0 $\theta = 0$ 10¹ \dot{F}_{10} Ti. 10 10 10⁰ 10^1 10^{2} 10⁰ 10¹ 10^{2} s_i s_i $\theta = 1$ = 10 10³ $+\dot{\boldsymbol{\mu}}^{10^3}$ ₩ 10² 10 10 10 10^1 10² 10^{0} 10^1 10² 10^{0} s_i S_i heta=-1 $\theta = -1$ 10 10 ₩ 10⁻¹ · م 10⁻¹ 10 10-2 10 10 10⁰ 10^1 10^{2} 10^{1} 10² 10^{0} S_i s_i

Why should you care?

How do we obtain the exponent θ ?

Universality

Universal $au_i \sim k_i^{\theta}$ heta=0 $\theta = 0$ 10^{1} Ti. 0 000000000000000 10 10 10⁰ 10¹ 10^{2} 10⁰ 10^1 10² s_i s_i $\theta = 1$ = 10 10³ $+ \frac{i}{\mathcal{L}}^{10^3}$ ₩ 10² 10 10¹ 10 10⁰ 10^1 10² 10^{0} 10^1 10² s_i s_i heta=-1 $\theta = -1$ 10 100 ₩ 10⁻¹ · م 10⁻¹ 10-2 10 10 10-10⁰ 10^{2} 10² 10^1 10⁰ 10¹ s_i s_i

Dynamic insight

Same topology – different spreading rules

Same topology – different spreading rules

Different interpretations of scale-freeness. All boiled down to a single analytically predictable parameter θ

Information flow

each link, pathway?

The zoo of information flow patterns

Taming the zoo of information flow patterns

 $\mathcal{F}_i \sim k_{i,\text{out}} k_{i,\text{in}}^{\omega-1}$

$$\mathcal{F}_{ij} \sim A_{ij} k_{i,out} k_{i,in}^{\xi-1} k_{j,in}^{\xi}$$

The zoo universal information flow patterns

Universal classes of information flow patterns

 $\mathcal{F}_i \sim k_{i,\text{out}} k_{i,\text{in}}^{\omega-1}$

Hub centric

Egalitarian

Peripheral

Flow analysis in Glycolysis: what is a biological network?

Dictionary of network dynamics

Microscopic Diversity condenses into a discrete set of Universality classes that determine how

Topology translates into Dynamics

Recoverability

Dynamic transitions - irreversible

Dynamic transitions - irreversible

Dynamic transitions - irreversible

Reigniting the network activity

Can you reignite a failed system by controlling just one node?

Single node reigniting – reviving the failed system by activating one node

Theory of network dynamics was brought to you by

See more at: https://www.barzellab.com/

@BarzelLab