### **Networked Federated Learning**

#### Alexander Jung, Feb. 2022

<u>https://www.linkedin.com/in/aljung/</u> <u>https://www.youtube.com/channel/UC\_tW4Z\_GfJ2WCnKDtwMuDUA</u> <u>https://twitter.com/alexjungaalto</u>

### About Me.

- MSc (2008) and Ph.D. (2012) in EE, TU Vienna
- since 2015 Ass. Prof. for Machine Learning at Aalto/CS
- leading group "Machine Learning for Big Data"
- two current main research areas (RA)
- teaching ML courses at Aalto and fitech.io

### **RA1: Networked Federated Learning.**

**High-Precision Management of Pandemics** 



Y. Sarcheshmehpour, M Leinonen and AJ, "Federated Learning From Big Data Over Networks", IEEE ICASSP, 2021.

- AJ, "Networked Exponential Families for Big Data Over Networks," in IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3033817.
- AJ, N. Tran, "Localized Linear Regression in Networked Data," in IEEE SPL, 2019, doi: 10.1109/LSP.2019.2918933.

### **RA2: Explainable Machine Learning.**



explanation can be:

- relevant example of training set
- subset of features
- counterfactuals
- a free text explanation
- court sentence

AJ, "Explainable Empirical Risk Minimization", arXiv eprint, 2020. weblink

AJ Jung and P. H. J. Nardelli, "An Information-Theoretic Approach to Personalized Explainable Machine Learning," in IEEE SPL, 2020, doi: 10.1109/LSP.2020.2993176.

### **Networked Federated Learning**

#### In a nutshell:

organize data, models and computation for machine learning as networks.







### **Networked Federated Learning**



### Networked Data



### Weather Stations.





FINNISH METEOROLOGICAL INSTITUTE

### ImageNet.

"...ImageNet is an image database organized according to the <u>WordNet</u> hierarchy (currently only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images..."

https://image-net.org/

### WordNet.

"...Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept... The resulting network of meaningfully related words and concepts can be navigated....."

https://wordnet.princeton.edu/

### Wikidata.



#### https://www.wikidata.org/wiki/Wikidata:Main\_Page

### Diseases.



15

#### WSN.



### Anchors.







### Networked Models.



#### local model for each node

couple models at connected nodes

### Sheaves on Graphs.

**Definition 2.2** (Sheaves). Let G be a graph. A sheaf  $\mathcal{F}$  on G consists of a vector space  $\mathcal{F}(v)$  for each vertex v of G, a vector space  $\mathcal{F}(e)$  for each edge e of G, and a linear transformation  $\mathcal{F}_{v \leq e} : \mathcal{F}(v) \to \mathcal{F}(e)$  for each incident vertex-edge pair  $v \leq e$ .



https://www.jakobhansen.org/publications/gentleintroduction.pdf



### **Generalized Total Variation (GTV)**



force params of well connected nodes to be similar by requiring a small GTV

$$\sum_{\{i,j\}} A_{i,j} \phi \left( \mathbf{w}^{(i)} - \mathbf{w}^{(j)} \right)$$

### **Two Special Cases of GTV.**

#### total variation $\phi(\mathbf{u}) = \|\mathbf{u}\|_2$

graph Laplacian quadratic from is GTV with

$$\phi(\mathbf{u}) = \|\mathbf{u}\|_2^2$$



### GTV Minimization.





### **GTV Minimization**. $\min_{\mathbf{w}} \sum L^{(i)}(w^{(i)}) + \lambda \sum A_{i,j} \phi(w^{(i)} - w^{(j)})$ ieM increasing $\lambda$ average local loss "clusteredness"

training set  $\mathcal{M}$ 

**Special Case: Network Lasso.**  $\min_{\mathbf{w}} \sum_{i=1}^{j} L^{(i)}(w^{(i)}) + \lambda \sum_{i=1}^{j} A_{i,j} \|w^{(i)} - w^{(j)}\|$  $\{i,i\}$ ieM

#### Network Lasso: Clustering and Optimization in Large Graphs

by D Hallac · 2015 · Cited by 206 — Network Lasso: Clustering and Optimization in Large Graphs ... Keywords: Convex Optimization, ADMM, Network Lasso. Go to: ... 2013 [Google Scholar]. 2.

Abstract · INTRODUCTION · CONVEX PROBLEM... · EXPERIMENTS

Special Case: "MOCHA"  
$$\min_{w} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \|w^{(i)} - w^{(j)}\|^2$$

https://papers.nips.cc > paper > 7029-federated-m... V PDF

#### Federated Multi-Task Learning - NIPS Proceedings

by V Smith  $\cdot$  2017  $\cdot$  Cited by 501 — 3.2 MOCHA: A Framework for **Federated Multi-Task** Learning. In the federated setting, the aim is to train statistical models directly on the edge, and thus we solve (1) while assuming that the data {X1,..., Xm} is distributed across m nodes or devices.

Special Case: Graph Sig. Recovery  

$$\min_{w} \sum_{i \in M} (x^{(i)} - w^{(i)})^2 + \lambda \sum_{\{i,j\}} A_{i,j} (w^{(i)} - w^{(j)})^2$$

https://papers.nips.cc > paper > 7029-federated-m... V PDF

#### Federated Multi-Task Learning - NIPS Proceedings

by V Smith  $\cdot$  2017  $\cdot$  Cited by 501 — 3.2 MOCHA: A Framework for **Federated Multi-Task** Learning. In the federated setting, the aim is to train statistical models directly on the edge, and thus we solve (1) while assuming that the data {X1,..., Xm} is distributed across m nodes or devices.

### **GTVMin is Multi-Task Learning**

learn model params jointly for all nodes exploit similarities between local datasets



l



William S. Cleveland, Susan J. Devlin, Eric Grosse, "Regression by local fitting: Methods, properties, and computational algorithms," Journal of Econometrics, Volume 37, Issue 1, 1988.

### **Computational and Statistical** Aspects.

#### how to solve GTVMin efficiently?

are GTVMin solutions statistically useful?

### **Computational Aspects.**

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$

- in-network computation using low-cost devices
- robustness against node/link failures
- robustness against "stragglers"

### Computational Aspects.

convergence rates; robustness against node failures or "stragglers"; stochastic variants for trading complexity against accuracy

$$Gradient Descent$$

$$\min_{w} \sum_{i \in M} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$

$$f(w)$$

$$w^{(k+1)} = w^{(k)} - \alpha^{(k)} \nabla f(w^{(k)})$$

**Iterative Linear Solver.**  $\min_{w} \sum_{i \in \mathbb{N}} (x^{(i)} - w^{(i)})^2 + \lambda \sum_{i \in \mathbb{N}} A_{i,j} (w^{(i)} - w^{(j)})^2$  $\overline{\{i,j\}}$ ieM f(w) $\nabla f(\mathbf{w}) = 0 \leftrightarrow \mathbf{L}\mathbf{w} = \mathbf{b}$ 

Spielman D.A. (2012) Algorithms, Graph Theory, and the Solution of Laplacian Linear Equations. In Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. https://doi.org/10.1007/978-3-642-31585-5\_5

### Rewrite GTVMin using Dual Var.

 $\min_{\mathbf{w}} \sum L^{(i)}(w^{(i)}) + \lambda \sum A_{i,j} \phi(w^{(i)} - w^{(j)})$ ieM  $\min_{\mathbf{w}} \sum L^{(i)}(w^{(i)}) + \lambda \sum A_{i,j} \phi(u^{(i,j)})$  $\overline{\{i, j\}}$ iεM s.t.  $\mathbf{B}\mathbf{w} = \mathbf{u}$ 39

## Primal-Dual Gradient Method. $\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(u^{(i,j)})$



S. Alghunaim, A. Sayed, (2020).

 $s.t.\mathbf{Bw} = \mathbf{u}$ 

Algorithm (Incremental PD gradient method)

Setting: Let  $J_{\rho}(w) = J(w) + \frac{\rho}{2} ||Bw - b||^2$  for some  $\rho \ge 0$ and choose positive step-sizes  $\mu_w$  and  $\mu_{\lambda}$ . Let  $w_{-1}$  and  $\lambda_{-1}$ be arbitrary initial conditions and repeat for  $i \ge 0$ 

$$w_{i} = w_{i-1} - \mu_{w} \left( \nabla J_{\rho}(w_{i-1}) + B^{\mathsf{T}} \lambda_{i-1} \right)$$

$$\lambda_{i} = \lambda_{i-1} + \mu_{\lambda} (Bw_{i} - b)$$
(4a)
(4b)

Linear convergence of primal-dual  $\lambda_i = \lambda_{i-1} + \mu_{\lambda}(Bw_i - b)$ gradient methods and their performance in distributed optimization. Automatica. 117. 109003. 10.1016/j.automatica.2020.109003.

### ADMM (for Non-Smooth Obj.)

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(u^{(i,j)})$$



$$s.t.\mathbf{Bw} = \mathbf{u}$$

$$x^{k+1} := \operatorname*{argmin}_{x} L_{\rho}(x, z^k, y^k) \tag{3.2}$$

$$z^{k+1} := \operatorname*{argmin}_{z} L_{\rho}(x^{k+1}, z, y^{k})$$
(3.3)

$$y^{k+1} := y^k + \rho(Ax^{k+1} + Bz^{k+1} - c), \qquad (3.4)$$

41

**Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers** *S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein* 

### **Primal Dual Methods**

#### solve GTVMin jointly with its dual!

dual of GTVMin has remarkable interpretation...

### Primal Form of GTVMin.

$$\min_{\mathbf{w}} f(\mathbf{w}) + g(\mathbf{Dw})$$

$$f(\mathbf{w}) \coloneqq \sum_{i \in \mathbf{M}} L^{(i)}(\mathbf{w}^{(i)}) \qquad g(\mathbf{u}) \coloneqq \lambda \sum_{e \in \mathcal{E}} A_e \phi(\mathbf{u}^{(e)})$$
  
primal variables  $\mathbf{w} : \mathcal{V} \to \mathbb{R}^n : i \mapsto \mathbf{w}^{(i)}$   
dual variables  $\mathbf{u} : \mathcal{E} \to \mathbb{R}^n : e \mapsto \mathbf{u}^{(e)}$   
block-incidence matrix  $\mathbf{D} \in \{-1, 1, 0\}^{\mathcal{E} \times \mathcal{V}}$ 

### Dual of GTVMin.





### **Primal-Dual Optimality Conditions.**

(assuming convexity of loss functions and GTV)

primal and dual variables  $\,\widehat{w}, \widehat{u}$  optimal if and only if

$$\mathbf{M}^{-1} \begin{pmatrix} \partial f & \mathbf{D}^T \\ -\mathbf{D} & \partial g^* \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{w}} \\ \widehat{\mathbf{u}} \end{pmatrix} \ni \mathbf{0} \text{ with } \mathbf{M} := \begin{pmatrix} \mathbf{T}^{-1} & -\mathbf{D}^T \\ -\mathbf{D} & \mathbf{\Sigma}^{-1} \end{pmatrix}$$
$$\left( \mathbf{\Sigma} \right)_{e,e} := \sigma_e \mathbf{I}_n, \text{ for } e \in \mathcal{E}, \ \left( \mathbf{T} \right)_{i,i} := \tau_i \mathbf{I} \text{ for } i \in \mathcal{V},$$
$$\text{with } \sigma_e := 1/2 \text{ for } e \in \mathcal{E} \text{ and } \tau_i := 1/|\mathcal{N}_i| \text{ for } i \in \mathcal{V}.$$

R. T. Rockafellar , <u>CONVEX ANALYSIS</u>, Princeton Univ. Press, 1970.

### **Proximal Point Algorithm.**

primal and dual variables  $\widehat{w}$ ,  $\widehat{u}$  optimal if and only if

$$\mathbf{M}^{-1} \begin{pmatrix} \partial f & \mathbf{D}^T \\ -\mathbf{D} & \partial g^* \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{w}} \\ \widehat{\mathbf{u}} \end{pmatrix} \ni \mathbf{0} \text{ with } \mathbf{M} := \begin{pmatrix} \mathbf{T}^{-1} & -\mathbf{D}^T \\ -\mathbf{D} & \mathbf{\Sigma}^{-1} \end{pmatrix}$$

solve iteratively by proximal point algorithm

$$\begin{pmatrix} \widehat{\mathbf{w}}^{(k+1)} \\ \widehat{\mathbf{u}}^{(k+1)} \end{pmatrix} = \begin{pmatrix} \mathbf{I} + \mathbf{M}^{-1} \begin{pmatrix} \partial f & \mathbf{D}^T \\ -\mathbf{D} & \partial g^* \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \widehat{\mathbf{w}}^{(k)} \\ \widehat{\mathbf{u}}^{(k)} \end{pmatrix}$$

A. Chambolle, T. Pock. An introduction to continuous optimization for imaging. Acta Numerica, 2016.

#### **After Some Manipulations.**

Algorithm 1 Primal-Dual Method for Networked FL

**Input**: empirical graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{A})$ ; training set  $\{\mathbf{X}^{(i)}\}_{i \in \mathcal{M}}$ ; regularization parameter  $\lambda$ ; loss  $\mathcal{L}$ ; GTV penalty  $\phi$ Initialize: k := 0;  $\widehat{\mathbf{w}}_0 := \mathbf{0}$ ;  $\sigma_e = 1/2$  and  $\tau_i = 1/|\mathcal{N}_i|$ 1: while stopping criterion is not satisfied do for all nodes  $i \in \mathcal{V}$  do  $\widehat{\mathbf{w}}_{k+1}^{(i)} := \widehat{\mathbf{w}}_k^{(i)} - \tau_i \sum_{e \in \mathcal{E}} D_{e,i} \widehat{\mathbf{u}}_k^{(e)}$ 2: 3: 4: end for for nodes in the training set  $i \in \mathcal{M}$  do 5:  $\widehat{\mathbf{w}}_{k+1}^{(i)} := \mathcal{P}\mathcal{U}^{(i)} \{ \widehat{\mathbf{w}}_{k+1}^{(i)} \}$ 6: end for 7: node i for all edges  $e \in \mathcal{E}$  do 8:  $\widehat{\mathbf{u}}_{k+1}^{(e)} := \widehat{\mathbf{u}}_{k}^{(e)} + \sigma_e \left( 2 \left( \widehat{\mathbf{w}}_{k+1}^{(e_+)} - \widehat{\mathbf{w}}_{k+1}^{(e_-)} \right) - \left( \widehat{\mathbf{w}}_{k}^{(e_+)} - \widehat{\mathbf{w}}_{k}^{(e_-)} \right) \right)$ 9:  $\widehat{\mathbf{u}}_{k+1}^{(e)} := \mathcal{D}\mathcal{U}^{(e)} \{ \widehat{\mathbf{u}}_{k+1}^{(e)} \}$ 10: end for 11: 12: k := k + 113: end while

### Algorithm 1 is Attractive for NFL...

- decentralized implementation (mess. pass.)
- robust against various imperfections
  - > approximate primal/dual updates
  - node/link failures

privacy friendly; no raw data exchanged

### Local Computations in Algorithm 1.

$$L^{(i)}\left(\mathcal{X}^{(i)}, \mathbf{w}^{(i)}\right)$$

$$A_{i,j}\phi\left(\mathbf{w}^{(i)} - \mathbf{w}^{(j)}\right)$$

node-wise primal update:  $\mathcal{PU}^{(i)}\{\mathbf{v}\} := \operatorname*{argmin}_{\mathbf{z}\in\mathbb{R}^n} L^{(i)}(\mathbf{z}) + (1/2\tau_i) \|\mathbf{v}-\mathbf{z}\|^2.$ 

edge-wise  $\mathcal{DU}^{(e)}\{\mathbf{v}\} := \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^n} \lambda A_e \phi^* (\mathbf{z}/(\lambda A_e)) + (1/2\sigma_e) \|\mathbf{v} - \mathbf{z}\|^2.$ dual update:

### **Spreading Local Results.**

$$L^{(i)}\left(\mathcal{X}^{(i)}, \mathbf{w}^{(i)}\right)$$

$$A_{i,j}\phi\left(\mathbf{w}^{(i)} - \mathbf{w}^{(j)}\right)$$

$$A_{i,j}\phi\left(\mathbf{w}^{(i)} - \mathbf{w}^{(i)}\right)$$

$$A_{i,j}\phi\left(\mathbf{w}^{(i)} - \mathbf{w}^{(i)$$

51

### Networked Data as Realizations of RV

$$\mathcal{X}^{(i)} \text{ iid } \sim p^{(i)}(\mathbf{z})$$
  
 $\operatorname{Prob}(A_{i,j} = 1) = p$ 

P. Bianchi, W. Hachem, A. Salim.

A Fully Stochastic Primal-Dual Algorithm. Optimization Letters, Springer Verlag, 2020,

### Random Node/Link Failures.



Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications Antonin Chambolle, Matthias J. Ehrhardt, Peter Richtárik, and Carola-Bibiane Schönlieb SIAM Journal on Optimization 2018 28:4, 2783-2808



- Huang, Z. and Gong, Y., "Differentially Private ADMM for Convex Distributed Learning: Improved Accuracy via Multi-Step Approximation", <i>arXiv e-prints</i>, 2020.
- Huang, Z., Hu, R., Guo, Y., Chan-Tin, E., and Gong, Y., "DP-ADMM: ADMM-based Distributed Learning with Differential Privacy", <i>arXiv e-prints</i>, 2018.
- J. C. Duchi, M. I. Jordan, and M. J. Wainwright, "Local privacy and statistical minimax rates," in Proc. IEEE Annu. Symp. Found. Comput. Sci., pp. 429–438, 2013. 54

### Bottom Line.

established distributed optimization provides efficient technology for solving GTVMin in robust and privacy-friendly way



### Are GTVMin Solutions Any Good?

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$



### training/sampling set ${\mathcal M}$

which combination of signal model (choice of  $\phi$ ) and sampling set M ensure solutions of GTVMin are "sensible" ? 56

### Statistical Aspects.

 $min_{w}\sum_{i=1}^{j}L^{(i)}(w^{(i)}) + \lambda\sum_{i=1}^{j}A_{i,j}\phi(w^{(i)} - w^{(j)})$  $\{i,j\}$ iεM

statistical properties of GTVMin solutions?

- sampling theorems (signal processing)
- generalization bounds (ML perspective)

### **Signal Processing Perspective.**



M. Tsitsvero, S. Barbarossa and P. Di Lorenzo, "Signals on Graphs: Uncertainty Principle and Sampling," in *IEEE Transactions on Signal Processing*, vol. 64, no. 18, pp. 4845-4860, 15 Sept.15, 2016, doi: 10.1109/TSP.2016.2573748.

### Machine Learning Perspective.

**Theorem 1 (Generalization Performance of Graph Regularization).** Let  $\gamma$  be the regularization parameter, T be a set of  $k \geq 4$  vertices  $\mathbf{x}_1, \ldots, \mathbf{x}_k$ , where each vertex occurs no more than t times, together with values  $y_1, \ldots, y_k$ ,  $|y_i| \leq M$ . Let  $f_T$  be the regularization solution using the smoothness functional S with the second smallest eigenvalue  $\lambda_1$ . Assuming that  $\forall \mathbf{x} | f_T(\mathbf{x}) | \leq K$  we have with probability  $1 - \delta$  (conditional on the multiplicity being no greater than t):

$$|R_k(f_T) - R(f_T)| \le \beta + \sqrt{\frac{2\log(2/\delta)}{k}} \left(k\beta + (K+M)^2\right)$$

 $\beta = \frac{3M\sqrt{tk}}{(km)} + \frac{4M}{L}$ 

where

Belkin M., Matveeva I., Niyogi P. Regularization and Semi-supervised Learning on Large Graphs. COLT 2004. Lecture Notes in Computer Science, Springer, 2004 https://doi.org/10.1007/978-3-540-27819-1\_43

### **Our Perspective: Flows.**



A. Jung, "On the Duality Between Network Flows and Network Lasso," in *IEEE Signal Processing Letters*, vol. 27, pp. 940-944, 2020.

### **Cluster-wise Pooling.**



parameter vectors can only change over statured links

## network topology meets geometry of loss functions !

 $\mathbf{w}^{(i)}$ 

 $\nabla L^{(i)}(\mathbf{w}^{(i)})$ 

 $\mathbf{w}^{(j)}$ 

 $A_{i,j}$ 

### Measure Connectivity by Flows.



connectivity measured by flow  $\rho$  that can be routed over boundary edge

### Statistical Error vs. Connectivity.



A. Jung and N. Tran, "Localized Linear Regression in Networked Data," in *IEEE Signal Processing Letters*, vol. 26, no. 7, pp. 1090-1094, July 2019.

### **Clustering Assumption in SBM.**



- intra-cluster edge prob  $p_{in}$
- inter-cluster edge prob  $p_{out}$
- S training nodes in each cluster
- critical value for S\*pin/pout

#### A. Jung,

"Clustering in Partially Labeled Stochastic Block Models via Total Variation Minimization," 54th Asilomar Conference on Signals, Systems, and Computers, 2020,

### Mathematical Device.

- flow conservation/Hoffman's circulation theorem
- concentration of cuts in random graphs

#### cluster size $N_1$ remaining nodes $N - N_1$

 $\approx N_1 p_{in}$ 

 $- \cdots \approx N_1(N - N_1)p_{out}$ 

R. Karger,

Random sampling in cut, flow, and network design problems,Math. Oper. Res., 24 (1999), pp. 383–413.66

### Wrap Up.

- formulated federated learning as GTV minimization
- two special cases: network Lasso and MOCHA
- solved GTV min. with established primal-dual method
- scalable and robust implementation as message passing
- GTV min. adaptively pools similar datasets

#### Want to dig deeper ?



#### upcoming IEEE SPS Seasonal School on Networked Federated Learning

#### **Tentative Schedule**

Each day consists of lectures and exercises.

| Mo. 28.03.                     | Tue. 29.03.               | Wed. 30.03.       | Th. 31.03.                          | Fr. 01.04.                  |
|--------------------------------|---------------------------|-------------------|-------------------------------------|-----------------------------|
| Machine Learning               | Networks                  | <b>Basic FL</b>   | Clustered FL                        | <b>Trustworthy FL</b>       |
| Data, Model, Loss              | Graphs and their Matrices | Networked Data    | Networked Models                    | <b>Privacy-Preservation</b> |
| Linear and Logistic Regression | Spectrum of Laplacian     | Centralized FL    | <b>Total Variation Minimization</b> | Explainability              |
| Gradient-Based Learning        | Cluster Structure         | Gossip, Consensus | Distributed SGD                     | Legal Aspects               |

#### https://ieeespcasfinland.github.io/

# Thank you for your attention!