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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

⇒ Use G to study graph signals, data associated with nodes in V
I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Motivating examples – Graph signals

I Goal: Process, analyze and learn from graph signals

⇒ As.: Signal properties related to topology of G (e.g., locality)

I Graph SP: broaden classical SP to graph signals [Shuman’13,Sandryhaila’13]

⇒ Main actors: nodal signals x, y, w and graph shift operator S

⇒ Algorithms that fruitfully leverage this relational structure

I GSP leverages S to define: Graph Fourier Transform and Graph Filters
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Network Data Analysis via Graph SP

I Graph G with N nodes and adjacency A

⇒ Aij = Proximity between i and j

I Define a signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

I Associated with G is the graph-shift operator S = VΛV−1 ∈ RN×N

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (local structure in G )

⇒ Ex: A and Laplacian L = D− A matrices

I Graph filters → Matrix polynomials: H =
∑N−1

l=0 hlSl = Vdiag(h̃)V−1

I Graph SP → Exploit structure encoded in S to process x

I Take the reverse path. How to use GSP to infer the graph topology?

⇒ Talk’s key GSP concepts: graph signal smoothness and stationarity
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Smoothness and Laplacian frequencies

I Total variation of signal x with respect to L = D− A = BBT

TV(x) = xTLx =
N∑

i,j=1,j>i

Aij(xi − xj)
2

⇒ Smoothness measure on the graph G (Dirichlet energy)

I For L eigenvecs V =[v0, ..., vN−1] ⇒ TV(vk)=λk ⇒ TV(1)=0

⇒ λ0 =0 and can view λ0 = 0 ≤ · · · ≤ λN−1 as frequencies

I Ex: gene network, N =10, k =0, k =1, k =9
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Graph stationarity

I Random signals over a graph G ⇒ (Statistical) Properties related to G

⇒ In time, stationarity is a pervasive, tractable and fruitful model

Stationary graph signal

Def: A graph signal x is stationary with respect to the shift S if and
only if x = Hw, where H =

∑L−1
l=0 hlSl and w is white.

I The covariance matrix of the stationary signal x is a polynomial on S

Cx = E
[
Hw(Hw)T

]
= HE

[
wwT

]
HT = H2 = h0I+2h0h1S+(2h0h2+h21)S2...

I Key: Cx and S simultaneously diagonalizable

⇒ eigenvecs(Cx)=eigenvecs(S) AND CxS=SCx
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What is this talk about?

I Learning graphs from nodal observations

I Fundamental problem in statistics (later)

I Key in neuroscience [Sporns’10]

⇒ Functional network from fMRI signals

I Most GSP works: how known graph S affects signals and filters

I Here, reverse path: how to use GSP to infer the graph topology?
I Graphical models [Egilmez et al’16], [Rabbat’17], [Kumar et al’19], . . .
I Smooth signals [Dong et al’15], [Kalofolias’16], [Sardellitti et al’17], . . .
I Graph filtering models [Shafipour et al’17], [Thanou et al’17], . . .
I Stationary signals [Pasdeloup et al’15], [Segarra et al’16], . . .
I Directed graphs [Mei-Moura’15], [Shen et al’16], . . .
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Connecting the dots

I Recent tutorials on learning graphs from data
I IEEE Signal Processing Magazine and Proceedings of the IEEE
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The construction of a meaningful graph topology plays a 
crucial role in the effective representation, processing, 
analysis, and visualization of structured data. When a nat-

ural choice of the graph is not readily available from the data 
sets, it is thus desirable to infer or learn a graph topology from 
the data. In this article, we survey solutions to the problem of 
graph learning, including classical viewpoints from statistics 
and physics, and more recent approaches that adopt a graph 
signal processing (GSP) perspective. We further emphasize 
the conceptual similarities and differences between classical 
and GSP-based graph-inference methods and highlight the 
potential advantage of the latter in a number of theoretical and 
practical scenarios. We conclude with several open issues and 
challenges that are keys to the design of future signal pro-
cessing and machine-learning algorithms for learning graphs 
from data.

Introduction
Modern data analysis and processing tasks typically involve 
large sets of structured data, where the structure carries criti-
cal information about the nature of the data. One can find nu-
merous examples of such data sets in a wide diversity of ap-
plication domains, including transportation networks, social 
networks, computer networks, and brain networks. Typically, 

graphs are used as mathematical tools to describe the struc-
ture of such data. They provide a flexible way of  representing 
the relationship between data entities. In the past decade, 
numerous signal processing and machine-learning algorithms 
have been introduced for analyzing structured data on a priori 
known graphs [1]– [3]. However, there are often settings where 
the graph is not readily available, and the structure of the data 
has to be estimated to permit the effective representation, pro-
cessing, analysis, or visualization of the data. In this case, a 
crucial task is to infer a graph topology that describes the char-
acteristics of the data observations, hence capturing the under-
lying relationship between these entities.

Consider an example in brain signal analysis: suppose we 
are given blood-oxygen-level-dependent (BOLD) signals, i.e., 
time series extracted from functional magnetic resonance 
imaging data that reflect the activities of different regions of 
the brain. An area of significant interest in neuroscience is the 
inference of functional connectivity, i.e., to capture the relation-
ship between brain regions that correlate or synchronize given a 
certain condition of a patient, which may help reveal underpin-
nings of some neurodegenerative diseases (see Figure 1). This 
leads to the problem of inferring a graph structure, given the 
multivariate BOLD time series data.

Formally, the problem of graph learning is the following: 
given M  observations on N  variables or data entities rep-
resented in a data matrix ,X RN M! #  and given some prior 
knowledge (e.g., distribution, data model, and so on) about 
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ABSTRACT | Identifying graph topologies as well as processes 

evolving over graphs emerge in various applications involving 

gene-regulatory, brain, power, and social networks, to name 

a few. Key graph-aware learning tasks include regression, 

classification, subspace clustering, anomaly identification, 

interpolation, extrapolation, and dimensionality reduction. 

Scalable approaches to deal with such high-dimensional tasks 

experience a paradigm shift to address the unique modeling and 

computational challenges associated with data-driven sciences. 

Albeit simple and tractable, linear time-invariant models are 

limited since they are incapable of handling generally evolving 

topologies, as well as nonlinear and dynamic dependencies 

between nodal processes. To this end, the main goal of this paper 

is to outline overarching advances, and develop a principled 

framework to capture nonlinearities through kernels, which are 

judiciously chosen from a preselected dictionary to optimally 

fit the data. The framework encompasses and leverages (non)

linear counterparts of partial correlation and partial Granger 

causality, as well as (non)linear structural equations and vector 

autoregressions, along with attributes such as low rank, sparsity, 

and smoothness to capture even directional dependencies with 

abrupt change points, as well as time-evolving processes over 

possibly time-evolving topologies. The overarching approach 

inherits the versatility and generality of kernel-based methods, 

Digital Object Identifier: 10.1109/JPROC.2018.2804318

and lends itself to batch and computationally affordable 

online learning algorithms, which include novel Kalman filters 

over graphs. Real data experiments highlight the impact of 

the nonlinear and dynamic models on consumer and financial 

networks, as well as gene-regulatory and functional connectivity 

brain networks, where connectivity patterns revealed exhibit 

discernible differences relative to existing approaches.

KEYWORDS | Kernel-based models; network topology 

inference; nonlinear modeling; time-varying networks

I. IN TRODUCTION

The science of networks and networked interactions has 

recently emerged as a major catalyst for understanding 

the behavior of complex systems [28], [67], [90], [109]. 

Such systems are typically described by graphs, and can 

be man-made or natural. For example, human interac-

tion over the web commonly occurs over social networks 

such as Facebook and Twitter, while sophisticated brain 

functions are the result of complex physical interactions 

among neurons; see, e.g., [95] and references therein. 

Other complex networks show up in diverse fields includ-

ing financial markets, genomics, proteomics, power grids, 
and transportation systems, to name a few.

Despite their popularity, single-layer networks may fall 

short in describing complex systems. For instance, mode-

ling interactions between two individuals using a single edge 

weight can be an oversimplification of reality. Generalizing 
their single-layer counterparts, multilayer networks allow 

nodes to belong to different groups, termed layers [10], [66]. 

Manuscript received September 25, 2017; revised January 5, 2018; accepted  

February 2, 2018. Date of current version April 24, 2018. This work was supported by the 

National Science Foundation (NSF) under Grants 1514056, 1500713, 1711471, and NIH 
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Topology Identification and 
Learning Over Graphs: 
Accounting for Nonlinearities 
and Dynamics
This article focuses on the problem of learning graphs from data, in particular, to 
capture the nonlinear and dynamic dependencies.

By  G e o r G i o s  B .  G i a n n a k i s ,  Fe l l o w  IEEE ,  Ya n n i n G  s h e n ,  St u d e nt  Me m b e r  IEEE ,  
a nd GeorGios Va sil eios k a r a nikol a s, Student Member IEEE

I IEEE Trans. on Signal and Information Processing over Networks
I Special issue on Network Topology Inference (2020)
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Network topology inference problems

I Q: If G (or a portion thereof) is unobserved, can we infer it from data?

I Formulate as a statistical inference task, i.e. given
I Signal measurements xi at some or all vertices i ∈ V
I Indicators yij of edge status for some vertex pairs {i , j} ∈ V(2)

obs
I A collection G of candidate graphs G

Goal: infer the topology of the network graph G (V, E)

I Bring to bear existing statistical concepts and tools

⇒ Study identifiability, consistency, robustness, complexity

I Three canonical network topology inference problems [Kolaczyk’09]

(i) Link prediction
(ii) Association network inference ← Focus of this talk
(iii) Tomographic network topology inference
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Link prediction

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.
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Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Original graph Link prediction 

I Edge status is only observed for some subset of pairs V(2)
obs ⊂ V(2)

I Goal: predict edge status for all other pairs, i.e., V(2)
miss = V(2) \ V(2)

obs

I Approach address the problem leveraging:

a) topological info only (nodal features) and/or
b) nodal signals x = [x1, . . . , xN ]>
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Association network inference

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Original graph Association network 
inference 

I Suppose we only observe the graph signal x = [x1, . . . , xN ]>; and

I Assume (i , j) defined by nontrivial ‘level of association’ among xi , xj

I Goal: predict edge status for all vertex pairs V(2)
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Tomographic network topology inference

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Original graph Tomographic 
inference 

I Suppose we only observe xi for vertices i ⊂ V in the ‘perimeter’ of G

I Goal: predict edge and vertex status in the ‘interior’ of G
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Connecting the dots: Statistical methods

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work
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Association network inference

Learning a graph from nodal observations

“Given a collection X := [x1, ..., xP ] ∈ RN×P of graph signal observations
supported on the unknown graph G (V, E ,W) find an optimal S”

5

Experiments

G
en
es

Fig. 7.5 Image representation of 445 microarray expression profiles collected for E. coli, under
various conditions, for the 153 genes that are listed as known transcription factors in the Regu-
lonDB database. Larger negative values are indicated with darker shades of blue, and larger positive
values, in yellow to orange. Shades of green indicate values comparatively close to zero.

I Ill-posed problem: optimality, priors, regularizations

I Most classical approaches focus on pairwise similarities

⇒ User-defined similarity sim(i , j) = f (xi , xj) specifies edges (i , j) ∈ E
I More recent approaches look at G as a whole: mapping from X to S

I We start by reviewing classical approaches in statistics
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Correlation networks

I Pearson product-moment correlation as sim between vertex pairs

sim(i , j) := ρij =
cov[xi , xj ]√

var [xi ] var [xj ]
, i , j ∈ V

I Inference of edges E ⇔ Inference of non-zero correlations

⇒ Typically approached as a testing problem: H0 : ρij =0 vs. H1 : ρij 6=0

I Find sample covariance Ĉ = XXT , then ρ̂ij = Ĉij/
√
Ĉii Ĉjj

⇒ Edge exists if: 0.5 log
(

1+ρ̂ij
1−ρ̂ij

)
>

zα/2√
P−3 , with PFA = α [Kol’09]

I Non-zero entries of the GSO S:

⇒ Sij = ρ̂ij , Sij = Ĉij , Sij = 1{H1}, Sij = f (ρ̂ij), ...

⇒ Sparsification of the covariance / correlation matrix

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations 15 / 48
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Partial correlations

I Use correlations carefully: ‘correlation does not imply causation’
I Vertices i , j ∈ V may have high ρij because they influence each other

I But ρij could be high if both i , j influenced by a third vertex k ∈ V
⇒ Correlation networks may declare edges due to confounders

I Partial correlations better capture direct influence among vertices
I For i , j ∈ V consider latent vertices V−ij = V \ {i , j}, then partial correlation

of xi and xj , adjusting for x−ij = [x1, .., xi−1, xi+1, ..., xj−1, xj+1, ..., xN ]T is

ρij|V−ij
=

cov[xi , xj
∣∣ x−ij ]√

var
[
xi
∣∣ x−ij] var

[
xj
∣∣ x−ij] , i , j ∈ V

I Q: How do we obtain these partial correlations?
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Partial correlations

I Use correlations carefully: ‘correlation does not imply causation’
I Vertices i , j ∈ V may have high ρij because they influence each other

I But ρij could be high if both i , j influenced by a third vertex k ∈ V
⇒ Correlation networks may declare edges due to confounders

I Partial correlations better capture direct influence among vertices
I For i , j ∈ V consider latent vertices V−ij = V \ {i , j}, then partial correlation

of xi and xj , adjusting for x−ij = [x1, .., xi−1, xi+1, ..., xj−1, xj+1, ..., xN ]T is

ρij|V−ij
=

cov[xi , xj
∣∣ x−ij ]√

var
[
xi
∣∣ x−ij] var

[
xj
∣∣ x−ij] , i , j ∈ V

I Q: How do we obtain these partial correlations?

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations 16 / 48



Partial correlations and covariance selection

I Def: the precision matrix of x is Θ := C−1, with C being its covariance

I Key result: The partial correlations can be expressed as

ρij|V−ij
= − Θij√

ΘiiΘjj

I Edges E in the graph G ⇔ Non-zero entries in Θ

⇒ Inferring G from X known as covariance selection [Dempster’74]

⇒ Classical methods are ‘network-agnostic,’ and effectively test

H0 : ρij|V−ij
= 0 vs. H1 : ρij|V−ij

6= 0

⇒ Often not scalable, and P � N so estimation of Ĉ challenging

I Under Gaussianity ρij|V−ij
=0 iff xi and xj are conditionally independent

⇒ Also known as Gaussian Markov random field (GMRF)

⇒ A popular particular instance of partial correlation networks
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Graphical Lasso (GL)

I Sparsity-regularized maximum-likelihood estimator of Θ [Yuan’07]

Θ̂ = arg max
Θ�0

{
log det Θ− trace(ĈΘ)− λ‖Θ‖1

}
⇒ Effective when P � N, encourages interpretable models

⇒ Scalable solvers using coordinate-descent [Friedman’08]

I Performance guarantee: Graphical lasso with λ = 2
√

logN
P satisfies

‖Θ̂−Θ0‖2 ≤
√

d2
max logN

P
w.h.p.

⇒ Ground-truth Θ0, maximum nodal degree dmax

I Support consistency for P = Ω(d2
max logN) [Ravikumar’11]

I Partial correlation / GL: estimate GSO S sparsifying C−1
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Case study: Inferring gene-regulatory interactions

I Genes are segments of DNA encoding information about cell functions

I Such information used in the expression of genes

⇒ Creation of biochemical products, i.e., RNA or proteins

I Regulation of a gene refers to the control of its expression

Ex: regulation exerted during transcription, copy of DNA to RNA

⇒ Controlling genes are transcription factors (TFs)

⇒ Controlled genes are termed targets

⇒ Regulation type: activation or repression

I Regulatory interactions among genes basic to the workings of organisms

⇒ Inference of interactions → Finding TF/target gene pairs

I Such relational information summarized in gene-regulatory networks
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Regulatory interactions among E. coli genes

I Use microarray data and correlation methods to infer TF/target pairs

5

Experiments

G
en
es

Fig. 7.5 Image representation of 445 microarray expression profiles collected for E. coli, under
various conditions, for the 153 genes that are listed as known transcription factors in the Regu-
lonDB database. Larger negative values are indicated with darker shades of blue, and larger positive
values, in yellow to orange. Shades of green indicate values comparatively close to zero.

I Dataset: relative log expression RNA levels, for genes in E. coli
I 4,345 genes measured under 445 different experimental conditions

I Ground truth: 153 TFs, and TF/target pairs from database RegulonDB
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Methods to infer TF/target gene pairs

I Three correlation based methods to infer TF/target gene pairs

⇒ Interactions declared if suitable p-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene

Method 2: Partial correlation, controlling for shared effects of one
(m = 1) other TF, across all 152 other TFs

Method 3: Full partial correlation, simultaneously controlling for
shared effects of all (m = 152) other TFs

I In all cases applied Fisher transformation to obtain z-scores

⇒ Asymptotic Gaussian distributions for p-values, with P = 445

I Compared inferred graphs to ground-truth network from RegulonDB
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Performance comparisons

I ROC and Precision/Recall curves for Methods 1, 2, and 3

⇒ Precision: fraction of predicted links that are true

⇒ Recall: fraction of true links that are correctly predicted
6
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Fig. 7.6 ROC curves (left) and Precision/Recall curves (right) evaluating performance of the cor-
relation (yellow), partial correlation (red), and full partial correlation (blue) methods of network
inference described in the text.

I Method 1 performs worst, but none is stellar

⇒ Correlation not strong indicator of regulation in this data

I All methods share a region of high precision, but a very small recall

⇒ Limitations in number/diversity of profiles [Faith’07]

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations 22 / 48



Connecting the dots: GSP methods

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work
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Learning graphs from smooth signals

Rationale
I Seek graphs on which data admit certain regularities

I Nearest-neighbor prediction (a.k.a. graph smoothing)
I Semi-supervised learning

I Many real-world graph signals are smooth
I Graphs based on similarities among vertex attributes
I Network formation driven by homophily, proximity in latent space

Problem statement

Given observations X := [x1, ..., xP ] ∈ RN×P , identify a graph G
such that signals in X are smooth on G .

I Criterion: Dirichlet energy on the graph G with Laplacian L

⇒ Search for the GSO S = L such that TV(x) = xTLx small

TV(X) =
P∑

p=1

xTp Lxp
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Formulation and algorithm

I Noiseless obs. ⇒ Objective: Smoothness + graph regularization [Dong16]

L∗ = arg min
L

{
P∑

p=1

xTp Lxp +
β

2
‖L‖2F

}
s. to trace(L) = N, L1 = 0, Lij = Lji ≤ 0, i 6= j

⇒ Sparsity ‖L‖1 redundant due to linear constraints

I Noisy obs. ⇒ Objective must include fidelity term [Dong16]

L∗ = arg min
L,Y

{
‖X− Y‖2F + α

P∑
p=1

yT
p Lyp +

β

2
‖L‖2F

}
s. to trace(L) = N, ...

⇒ Not jointly convex in L and Y, but bi-convex

I Algorithmic approach: alternating minimization (AM), O(N3) cost

(S1) Fixed Y: solve for L via interior-point method, ADMM
(S2) Fixed L: low-pass graph-filter smoother Y = (I + αL)−1X
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Impact of regularizers on sparsity and accuracy

I Generate multiple signals on a synthetic Erdős-Rényi graph

I Recover the graph for different values of α and β

I More edges promoted by increasing β and decreasing α

I In the low noise regime, the ratio β/α determines behavior
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Learning a temperature graph in Switzerland

I 89 stations measuring monthly temperatures (1981-2010) [Meteoswiss]

I Learn a graph on which the temperatures vary smoothly

I Geographical distance not a good idea ⇒ different altitudes

I Recover altitude partition from spectral clustering

⇒ Red (high stations) and blue (low stations) clusters

I k-means applied directly to the temperatures (right) fails
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Graph smoothness meets GMRFs

I Smoothness is a deterministic metric and graph regularizers are needed

⇒ Note that
∑P

p=1 xTp Lxp =
∑P

p=1 trace(xpxTp L) = Ptrace(ĈL)

⇒ Use as regularizer log det(L)− λ‖L‖1

L∗ = arg max
L�0,γ≥0

{
log det L− trace(ĈL)− λ‖L‖1

}
s. to L1 = 0, Lij ≤ 0, i 6= j

I Θ = L GMRF with Laplacian constraints!!

⇒ KO: L singular (improper GMRF)

⇒ Use Θ = L + γI ⇒ Proper GMRF via diagonal loading [Lake’07]

I GMRF with Laplacian constr. favors graphs over which X is smooth

⇒ Efficient algorithms, topological constraints [Pavez’17], [Zhao’19]
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Connecting the dots: GSP methods
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Learning graphs from stationary graph signals

I Def: A graph signal x is stationary with respect to the shift S if and only
if x = Hw, where H =

∑L−1
l=0 hlSl and w is white.

⇒ Coro: The covariance matrix C = E
[
xxT

]
is a polynomial on S.

Graph learning based on stationarity

Find the sparsest GSO such that S can be (approximately) mapped to
Ĉ = 1

P XXT by a polynomial

Observations

(a) Our approach says mapping C→ S is polynomial (analytic)

(b) Correlation methods ⇒ C = S eigenvalues are kept unchanged

(c) Precision methods ⇒ C = S−1 eigenvalues are inverted

I Sparsifying entries of C or C−1 vs sparsest transformation (more ill posed)
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Graph recovery from polynomial covariances

I Finding S from C = h20I + 2h0h1S + (2h0h2 + h21)S2 non-convex but...

I Approach 1 [Segarra’16],[Pasdeloup’16]: [v1, ..., vN ] := eig(Ĉ) and

S∗ = argmin
λ

‖S‖0 s. to S =
N∑

k=1

λkvkvT
k , S ∈ S

⇒ Set S contains all admissible scaled adjacency (Laplacian) matrices

I Approach 2 [Segarra’17]: Use Ĉ directly and

S∗ = argmin
S

‖S‖0 s. to ĈS = SĈ, S ∈ S

⇒ Equivalent if S and Ĉ have non-repeated eigenvalues
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Polynomial covariances in random graphs

I More ill-posed than (partial) correlation nets ⇒ Theoretical results for:

⇒ Identifiability under perfect observations [Segarra’17]

⇒ Errors in the covariance, incomplete eigenvectors (singular Ĉ)

I Recovery rates: Erdős-Rényi varying N and edge probability p

⇒ Adjacency (left), Laplacian (mid), theoretical guarantees (right)

⇒ Works very well in random graphs (also in real datasets)
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Performance comparisons

I Comparison with graphical lasso and sparse correlation methods
I Evaluated on 100 realizations of ER graphs with N = 20 and p = 0.2
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I Graphical lasso implicitly assumes a filter H1 = (ρI + S)−1/2

⇒ For this filter spectral templates work, but not as well

I For general diffusion filters H2 spectral templates still work fine
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Inferring the structure of a protein

I Our method can be used to sparsify a given network

⇒ Keep direct and important edges or relations

⇒ Discard indirect relations that can be explained by direct ones

I Use eigenvectors V̂ of given network as noisy eigenvectors of S

Ex: Infer contact between amino-acid residues in BPT1 BOVIN

⇒ Use mutual information of amino-acid covariation as input
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Ground truth Mutual info. Network deconv. Our approach

I Network deconvolution assumes a specific filter model [Feizi’13]

⇒ We achieve better performance by being agnostic to this
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Stationarity-based generalizations

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work
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Stationarity as an overreaching model

I Assuming C→ S endows the problem with a flexible structure

⇒ It can be combined with smoothness (TV regularizer)

⇒ Graph regularizers for scenarios where # obs. P is limited

max
Θ�0,S

{
log det Θ− trace(ĈΘ)− λ‖S‖1

}
s. to SΘ = ΘS, S ∈ S

I Algorithms and theoretical results in a number of scenarios

⇒ Non-white inputs giving rise to Cx = H(S)CwH(S) [Shafipour’18]

⇒ Directed networks [Shafipour’18]

⇒ Online streaming signals [Shafipour’20]

⇒ Multi-relational graphs [Segarra’17,Navarro’20]

⇒ Hidden/latent nodes [Buciulea’19,Buciulea’21]
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The case of hidden vars. (latent nodes)

I In many relevant scenarios not all nodes are observed N = o + h

⇒ Can the o × o submatrix of S be recovered?

⇒ Can the full N ×N matrix S be recovered (network tomography)?

⇒ How to modify the optimization?

⇒ How much does the recovery performance degrade?

o = 11, h = 0 o = 10, h = 1 o = 10, h = 1
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Hidden vars: correlation and precision

I Assume for simplicity observed nodes are the first h ones

I Correlation assume direct relation ⇒ Trivial to generalize if hidden vars

⇒ Find Ĉo = 1
P XoXT

o , set Ŝo = Ĉo ⇒ Network tomo not feasible

I Precision challenging [Chandrasekaran’12], key when S = C−1:

⇒ (Co)−1 = So − R with R := Soh(Sh)−1Sho having rank h

Ŝo = arg max
So−R�0,R�0

log det(So−R)−trace(Ĉo(So−R))−λ‖So‖1+α‖R‖∗
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Hidden vars: polynomial covariances

I Two approaches if fully observed, what if hidden nodes?

⇒ Estimation of eigenvectors at observed nodes very challenging

⇒ What about ĈS = SĈ ?

ĈoSo + ĈohSho = SoĈo + SohĈho

I Leverage structure:

rank(ĈohSho) = h� o ĈohSho = (SohĈho)T ‖Sho‖0 � ho
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Hidden vars: recovery from polynomial covars

I Approach I: Convex relaxation

S∗o = argmin
R, So∈So

‖So‖1 + η‖R‖∗ s. to ĈoSo + R = SoĈo + RT

⇒ Re-weighted versions for `0 and nuclear norms are prudent

I Approach II: Additional structure, but convexity sacrificed

S∗o = argmin
Coh∈Coh, Soh∈Soh So∈So

‖So‖1 + α‖Soh‖1

s. to ĈoSo + ĈohSho = SoĈo + SohĈho

⇒ Alternating min, priors on Coh and Soh can be accommodated

⇒ Soh as byproduct (network tomography)
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Gaining insights

I Recovery with N = 20, o = 19, h = 1 for an ER graph

⇒ Non-convex formulation does a better job unveiling structure

I What if h varies? Sensitivity to particular nodes?...
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Urban mobility patterns via non-white diffusions

I Unveiling urban mobility patterns from Uber pickups in NYC

⇒ Times and locations: 1-1-15 to 6-29-15 and 263 locations (N = 30)

⇒ https://github.com/fivethirtyeight/uber-tlc-foil-response

I Input/output aggregated pickups 6am to 11am, 3pm to 8pm (x=Hw)

⇒ M = 2 graph processes: m = 1 weekday, m = 2 weekends

I Most edges connect
Manhattan with the other
boroughs ⇒ Uber used to
commute to/from suburbs

I Airports (Kennedy, Newark
and LaGuardia) high
degree nodes
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Joint Inference for US Senate Networks

I 2 US senators per state (N = 50) for 3 congresses (113th, 114th, 115th)

I Nodes are states, graph signals as congressional votes:

xi = s1i + s2i , sni =

 1, yea
−1, nay
0, ow


I True 3 graphs: Separately infer each graph with all available votes

(657 for 113th, 502 for 114th, 599 for 115th)

I Compare separate and joint inference to true graphs for increasing
number of randomly selected signals n ∈ {50, 100, · · · , 350} for ten
trials of randomized subsets

I Joint inference assumes signals are stationary on each graph

⇒ Graphs {S1,S2,S3} are relatively close

⇒ Promotes smoothness via TV (X)
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Joint Inference for US Senate Networks

For most cases, joint inference outperforms separate inference:

50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Congress 113 Joint
Congress 113 Separate
Congress 114 Joint
Congress 114 Separate
Congress 115 Joint
Congress 115 Separate
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Joint Inference for US Senate Networks
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Connecting the dots: Wrapping up

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work
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Closing remarks

I How to use the information in X = [x1, ..., xP ] to identify G (V, E)

⇒ Focus on static and undirected graphs

⇒ GSP offers some novel insights and tools

I Focus of the talk

⇒ Links with classical methods, intuition and problem formulation

⇒ Not on algorithms and theoretical results (happy to discuss)

⇒ Polynomial mappings (i.e., stationarity) as a flexible model

I Emerging topic areas we did not cover

⇒ Network tomography

⇒ Directed graphs and causal structure identification

⇒ Dynamic networks and multi-layer graphs

⇒ Nonlinear models of interaction

⇒ Many excellent works we did not mention (cf. SPMag)!
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Some open research directions

I Relevance to applications: How to choose a graph learning method?

⇒ Data itself as well as P, N, noise...

⇒ Dependent also on the SP/ML task?

I Additional research directions

⇒ Discrete and heterogeneous signals

⇒ Tractable graph priors, Bayesian methods

⇒ Non-homogeneous nodes

THANKS!
*Feel free to ask for the papers and/or the slides

[Segarra et al. “Network topology inference from spectral templates” IEEE TSIPN 2017.]
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