

Connecting the dots: Leveraging GSP to learn graphs from nodal observations

Antonio G. Marques King Juan Carlos University - Madrid, Spain

Thanks to: S. Segarra, G. Mateos, A. Ribeiro, C. Uhler, A. Buciulea, S. Rey, R. Shafipour, M. Navarro, (Spanish NSF: PID2019-105032gb-i00)

November 18, 2021 – IEEE SPS-DSI DEGAS Webinar Series

Network Science analytics

• Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships

- ▶ Desiderata: Process, analyze and learn from network data [Kolaczyk'09] ⇒ Use G to study graph signals, data associated with nodes in V
- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

- Goal: Process, analyze and learn from graph signals
 - \Rightarrow **As.:** Signal properties related to topology of G (e.g., locality)
- ► Graph SP: broaden classical SP to graph signals [Shuman'13,Sandryhaila'13]
 - \Rightarrow Main actors: nodal signals x, y, w and graph shift operator S
 - \Rightarrow Algorithms that fruitfully leverage this relational structure

► GSP leverages S to define: Graph Fourier Transform and Graph Filters

Network Data Analysis via Graph SP

▶ Graph G with N nodes and adjacency A

 ⇒ A_{ij} = Proximity between i and j

 ▶ Define a signal x ∈ ℝ^N on top of the graph

 $\Rightarrow x_i =$ Signal value at node *i*

Network Data Analysis via Graph SP

• Graph G with N nodes and adjacency **A** $\Rightarrow A_{ij} = \text{Proximity between } i \text{ and } j$

▶ Define a signal x ∈ ℝ^N on top of the graph ⇒ x_i = Signal value at node i

Associated with G is the graph-shift operator S = VAV⁻¹ ∈ ℝ^{N×N}
 ⇒ S_{ij} = 0 for i ≠ j and (i, j) ∉ E (local structure in G)
 ⇒ Ex: A and Laplacian L = D - A matrices

Network Data Analysis via Graph SP

- ► Graph G with N nodes and adjacency A ⇒ A_{ii} = Proximity between i and j
- ▶ Define a signal x ∈ ℝ^N on top of the graph ⇒ x_i = Signal value at node i

- Associated with G is the graph-shift operator S = VAV⁻¹ ∈ ℝ^{N×N}
 ⇒ S_{ij} = 0 for i ≠ j and (i, j) ∉ E (local structure in G)
 ⇒ Ex: A and Laplacian L = D − A matrices
- Graph filters \rightarrow Matrix polynomials: $\mathbf{H} = \sum_{l=0}^{N-1} h_l \mathbf{S}^l = \mathbf{V} \operatorname{diag}(\tilde{\mathbf{h}}) \mathbf{V}^{-1}$
- \blacktriangleright Graph SP \rightarrow Exploit structure encoded in ${\boldsymbol{S}}$ to process ${\boldsymbol{x}}$
- ► Take the reverse path. How to use GSP to infer the graph topology?
 ⇒ Talk's key GSP concepts: graph signal smoothness and stationarity

Smoothness and Laplacian frequencies

• Total variation of signal **x** with respect to $\mathbf{L} = \mathbf{D} - \mathbf{A} = \mathbf{B}\mathbf{B}^{T}$

$$\mathsf{TV}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathsf{L} \mathbf{x} = \sum_{i,j=1,j>i}^{N} A_{ij} (x_i - x_j)^2$$

 \Rightarrow Smoothness measure on the graph *G* (Dirichlet energy)

► For **L** eigenvecs $\mathbf{V} = [\mathbf{v}_0, ..., \mathbf{v}_{N-1}] \Rightarrow \mathsf{TV}(\mathbf{v}_k) = \lambda_k \Rightarrow \mathsf{TV}(\mathbf{1}) = 0$ $\Rightarrow \lambda_0 = 0$ and can view $\lambda_0 = 0 \le \cdots \le \lambda_{N-1}$ as frequencies

Smoothness and Laplacian frequencies

• Total variation of signal **x** with respect to $\mathbf{L} = \mathbf{D} - \mathbf{A} = \mathbf{B}\mathbf{B}^{T}$

$$\mathsf{TV}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathsf{L} \mathbf{x} = \sum_{i,j=1,j>i}^{N} A_{ij} (x_i - x_j)^2$$

 \Rightarrow Smoothness measure on the graph *G* (Dirichlet energy)

► For **L** eigenvecs $\mathbf{V} = [\mathbf{v}_0, ..., \mathbf{v}_{N-1}] \Rightarrow \mathsf{TV}(\mathbf{v}_k) = \lambda_k \Rightarrow \mathsf{TV}(\mathbf{1}) = 0$ $\Rightarrow \lambda_0 = 0$ and can view $\lambda_0 = 0 \le \cdots \le \lambda_{N-1}$ as frequencies

▶ Ex: gene network, N = 10, k = 0, k = 1, k = 9

Graph stationarity

► Random signals over a graph G ⇒ (Statistical) Properties related to G ⇒ In time, stationarity is a pervasive, tractable and fruitful model

Stationary graph signal

Def: A graph signal **x** is stationary with respect to the shift **S** if and only if $\mathbf{x} = \mathbf{H}\mathbf{w}$, where $\mathbf{H} = \sum_{l=0}^{L-1} h_l \mathbf{S}^l$ and **w** is white.

Graph stationarity

► Random signals over a graph G ⇒ (Statistical) Properties related to G ⇒ In time, stationarity is a pervasive, tractable and fruitful model

Stationary graph signal

Def: A graph signal **x** is stationary with respect to the shift **S** if and only if $\mathbf{x} = \mathbf{H}\mathbf{w}$, where $\mathbf{H} = \sum_{l=0}^{L-1} h_l \mathbf{S}^l$ and **w** is white.

The covariance matrix of the stationary signal x is a polynomial on S

$$\mathsf{C}_{\mathsf{x}} = \mathbb{E}\left[\mathsf{Hw}(\mathsf{Hw})^{\mathsf{T}}\right] = \mathsf{H}\mathbb{E}\left[\mathsf{ww}^{\mathsf{T}}\right]\mathsf{H}^{\mathsf{T}} = \mathsf{H}^{2} = h_{0}\mathsf{I} + 2h_{0}h_{1}\mathsf{S} + (2h_{0}h_{2} + h_{1}^{2})\mathsf{S}^{2}.$$

► Key: C_x and S simultaneously diagonalizable ⇒ eigenvecs(C_x)=eigenvecs(S) AND C_xS=SC_x

- Learning graphs from nodal observations
- Fundamental problem in statistics (later)
- ► Key in neuroscience [Sporns'10]
 - \Rightarrow Functional network from fMRI signals

- Learning graphs from nodal observations
- Fundamental problem in statistics (later)
- Key in neuroscience [Sporns'10]
 - \Rightarrow Functional network from fMRI signals

- ▶ Most GSP works: how known graph **S** affects signals and filters
- Here, reverse path: how to use GSP to infer the graph topology?
 - Graphical models [Egilmez et al'16], [Rabbat'17], [Kumar et al'19], ...
 - Smooth signals [Dong et al'15], [Kalofolias'16], [Sardellitti et al'17], ...
 - Graph filtering models [Shafipour et al'17], [Thanou et al'17], ...
 - Stationary signals [Pasdeloup et al'15], [Segarra et al'16], ...
 - Directed graphs [Mei-Moura'15], [Shen et al'16], ...

Connecting the dots

Recent tutorials on learning graphs from data

IEEE Signal Processing Magazine and Proceedings of the IEEE

IEEE Trans. on Signal and Information Processing over Networks
 Special issue on Network Topology Inference (2020)

- Formulate as a statistical inference task, i.e. given
 - ▶ Signal measurements x_i at some or all vertices $i \in \mathcal{V}$
 - ▶ Indicators y_{ij} of edge status for some vertex pairs $\{i, j\} \in \mathcal{V}_{obs}^{(2)}$
 - A collection G of candidate graphs G

Goal: infer the topology of the network graph $G(\mathcal{V}, \mathcal{E})$

- Bring to bear existing statistical concepts and tools
 - \Rightarrow Study identifiability, consistency, robustness, complexity

- Formulate as a statistical inference task, i.e. given
 - Signal measurements x_i at some or all vertices $i \in \mathcal{V}$
 - ▶ Indicators y_{ij} of edge status for some vertex pairs $\{i, j\} \in \mathcal{V}_{obs}^{(2)}$
 - A collection G of candidate graphs G

Goal: infer the topology of the network graph $G(\mathcal{V}, \mathcal{E})$

- Bring to bear existing statistical concepts and tools
 - \Rightarrow Study identifiability, consistency, robustness, complexity
- Three canonical network topology inference problems [Kolaczyk'09]
 - (i) Link prediction
 - (ii) Association network inference ← Focus of this talk
 - (iii) Tomographic network topology inference

- Edge status is only observed for some subset of pairs $\mathcal{V}_{obs}^{(2)} \subset \mathcal{V}^{(2)}$
- ▶ Goal: predict edge status for all other pairs, i.e., $\mathcal{V}_{miss}^{(2)} = \mathcal{V}^{(2)} \setminus \mathcal{V}_{obs}^{(2)}$
- Approach address the problem leveraging:
 - a) topological info only (nodal features) and/or
 - b) nodal signals $\mathbf{x} = [x_1, \dots, x_N]^\top$

Association network inference

- Suppose we only observe the graph signal $\mathbf{x} = [x_1, \dots, x_N]^\top$; and
- Assume (i, j) defined by nontrivial 'level of association' among x_i, x_j
- ▶ Goal: predict edge status for all vertex pairs V⁽²⁾

Tomographic network topology inference

Suppose we only observe x_i for vertices $i \subset V$ in the 'perimeter' of G

Goal: predict edge and vertex status in the 'interior' of *G*

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work

Learning a graph from nodal observations

"Given a collection $\mathbf{X} := [\mathbf{x}_1, ..., \mathbf{x}_P] \in \mathbb{R}^{N \times P}$ of graph signal observations supported on the unknown graph $G(\mathcal{V}, \mathcal{E}, \mathbf{W})$ find an optimal \mathbf{S} "

- Ill-posed problem: optimality, priors, regularizations
- Most classical approaches focus on pairwise similarities

 \Rightarrow User-defined similarity $sim(i,j) = f(x_i, x_j)$ specifies edges $(i,j) \in \mathcal{E}$

- ▶ More recent approaches look at G as a whole: mapping from X to S
- We start by reviewing classical approaches in statistics

Pearson product-moment correlation as sim between vertex pairs

$$extsf{sim}(i,j) :=
ho_{ij} = rac{ extsf{cov}[x_i, x_j]}{\sqrt{ extsf{var}[x_i] extsf{var}[x_j]}}, \ i, j \in \mathcal{V}$$

• Inference of edges $\mathcal{E} \Leftrightarrow$ Inference of non-zero correlations

 \Rightarrow Typically approached as a testing problem: $H_0: \rho_{ij} = 0$ vs. $H_1: \rho_{ij} \neq 0$

Pearson product-moment correlation as sim between vertex pairs

$$extsf{sim}(i,j) :=
ho_{ij} = rac{ extsf{cov}[x_i, x_j]}{\sqrt{ extsf{var}[x_i] extsf{var}[x_j]}}, \ i, j \in \mathcal{V}$$

► Inference of edges $\mathcal{E} \Leftrightarrow$ Inference of non-zero correlations \Rightarrow Typically approached as a testing problem: $H_0: \rho_{ij} = 0$ vs. $H_1: \rho_{ij} \neq 0$

► Find sample covariance $\hat{\mathbf{C}} = \mathbf{X}\mathbf{X}^{T}$, then $\hat{\rho}_{ij} = \hat{C}_{ij}/\sqrt{\hat{C}_{ii}\hat{C}_{jj}}$ \Rightarrow Edge exists if: $0.5 \log \left(\frac{1+\hat{\rho}_{ij}}{1-\hat{\rho}_{ij}}\right) > \frac{z_{\alpha/2}}{\sqrt{P-3}}$, with $P_{FA} = \alpha$ [Kol'09]

Non-zero entries of the GSO S:

$$\Rightarrow S_{ij} = \hat{\rho}_{ij}, \ S_{ij} = \hat{C}_{ij}, \ S_{ij} = 1_{\{H_1\}}, \ S_{ij} = f(\hat{\rho}_{ij}), \dots$$

 \Rightarrow Sparsification of the covariance / correlation matrix

Partial correlations

- ► Use correlations carefully: 'correlation does not imply causation'
 - ▶ Vertices $i, j \in \mathcal{V}$ may have high ρ_{ij} because they influence each other
- ▶ But ρ_{ij} could be high if both i, j influenced by a third vertex k ∈ V ⇒ Correlation networks may declare edges due to confounders

Partial correlations

- ► Use correlations carefully: 'correlation does not imply causation'
 - ▶ Vertices $i, j \in \mathcal{V}$ may have high ρ_{ij} because they influence each other
- ► But ρ_{ij} could be high if both i, j influenced by a third vertex k ∈ V ⇒ Correlation networks may declare edges due to confounders

- Partial correlations better capture direct influence among vertices
 For *i*, *j* ∈ V consider latent vertices V_{-ij} = V \ {*i*, *j*}, then partial correlation of x_i and x_j, adjusting for x_{-ij} = [x₁, ..., x_{i-1}, x_{i+1}, ..., x_{j-1}, x_{j+1}, ..., x_N]^T is
 ρ_{ij|V-ij} = cov[x_i, x_j | x_{-ij}] √var [x_i | x_{-ij}] var [x_j | x_{-ij}], *i*, *j* ∈ V
- Q: How do we obtain these partial correlations?

Partial correlations and covariance selection

- **• Def:** the precision matrix of x is $\Theta := \mathbf{C}^{-1}$, with **C** being its covariance
- Key result: The partial correlations can be expressed as

$$\rho_{ij|V_{-ij}} = -\frac{\Theta_{ij}}{\sqrt{\Theta_{ii}\Theta_{jj}}}$$

• Edges \mathcal{E} in the graph $G \Leftrightarrow$ Non-zero entries in Θ

Partial correlations and covariance selection

- **Def:** the precision matrix of x is $\Theta := \mathbf{C}^{-1}$, with **C** being its covariance
- ▶ Key result: The partial correlations can be expressed as

$$\rho_{ij|V_{-ij}} = -\frac{\Theta_{ij}}{\sqrt{\Theta_{ii}\Theta_{jj}}}$$

Edges *E* in the graph *G* ⇔ Non-zero entries in *Θ* ⇒ Inferring *G* from **X** known as covariance selection [Dempster'74]
 ⇒ Classical methods are 'network-agnostic,' and effectively test

$$H_0: \rho_{ij|\mathcal{V}_{-ij}} = 0$$
 vs. $H_1: \rho_{ij|\mathcal{V}_{-ij}} \neq 0$

 \Rightarrow Often not scalable, and $P \ll N$ so estimation of $\hat{\mathbf{C}}$ challenging

• Under Gaussianity $\rho_{ij|\mathcal{V}_{-ii}} = 0$ iff x_i and x_j are conditionally independent

 \Rightarrow Also known as Gaussian Markov random field (GMRF)

 \Rightarrow A popular particular instance of partial correlation networks

Graphical Lasso (GL)

Sparsity-regularized maximum-likelihood estimator of Θ [Yuan'07]

$$\hat{\boldsymbol{\Theta}} = \arg \max_{\boldsymbol{\Theta} \succeq \boldsymbol{0}} \left\{ \log \det \boldsymbol{\Theta} - \text{trace}(\hat{\boldsymbol{C}} \boldsymbol{\Theta}) - \lambda \| \boldsymbol{\Theta} \|_1 \right\}$$

⇒ Effective when $P \ll N$, encourages interpretable models ⇒ Scalable solvers using coordinate-descent [Friedman'08]

Graphical Lasso (GL)

Sparsity-regularized maximum-likelihood estimator of Θ [Yuan'07]

$$\hat{\boldsymbol{\Theta}} = \arg \max_{\boldsymbol{\Theta} \succeq \boldsymbol{0}} \left\{ \log \det \boldsymbol{\Theta} - \operatorname{trace}(\hat{\boldsymbol{C}} \boldsymbol{\Theta}) - \lambda \| \boldsymbol{\Theta} \|_1 \right\}$$

⇒ Effective when $P \ll N$, encourages interpretable models ⇒ Scalable solvers using coordinate-descent [Friedman'08]

• Performance guarantee: Graphical lasso with $\lambda = 2\sqrt{\frac{\log N}{P}}$ satisfies

$$\|\hat{\mathbf{\Theta}} - \mathbf{\Theta}_0\|_2 \leq \sqrt{rac{d_{\sf max}^2 \log N}{P}} \quad {
m w.h.p.}$$

⇒ Ground-truth Θ_0 , maximum nodal degree d_{max} ► Support consistency for $P = \Omega(d_{max}^2 \log N)$ [Ravikumar'11]

Partial correlation / GL: estimate GSO S sparsifying C⁻¹

- ▶ Genes are segments of DNA encoding information about cell functions
- Such information used in the expression of genes
 - \Rightarrow Creation of biochemical products, i.e., RNA or proteins

- ▶ Genes are segments of DNA encoding information about cell functions
- Such information used in the expression of genes
 - \Rightarrow Creation of biochemical products, i.e., RNA or proteins
- Regulation of a gene refers to the control of its expression Ex: regulation exerted during transcription, copy of DNA to RNA
 - \Rightarrow Controlling genes are transcription factors (TFs)
 - \Rightarrow Controlled genes are termed targets
 - \Rightarrow Regulation type: activation or repression

- ► Genes are segments of DNA encoding information about cell functions
- Such information used in the expression of genes
 - \Rightarrow Creation of biochemical products, i.e., RNA or proteins
- Regulation of a gene refers to the control of its expression Ex: regulation exerted during transcription, copy of DNA to RNA
 - \Rightarrow Controlling genes are transcription factors (TFs)
 - \Rightarrow Controlled genes are termed targets
 - \Rightarrow Regulation type: activation or repression
- Regulatory interactions among genes basic to the workings of organisms
 - \Rightarrow Inference of interactions \rightarrow Finding TF/target gene pairs
- Such relational information summarized in gene-regulatory networks

▶ Use microarray data and correlation methods to infer TF/target pairs

Experiments

Dataset: relative log expression RNA levels, for genes in E. coli

▶ 4,345 genes measured under 445 different experimental conditions

► Ground truth: 153 TFs, and TF/target pairs from database RegulonDB

- Three correlation based methods to infer TF/target gene pairs
 - \Rightarrow Interactions declared if suitable *p*-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene **Method 2:** Partial correlation, controlling for shared effects of one (m = 1) other TF, across all 152 other TFs **Method 2:** Full partial correlation, circulture currently controlling for

Method 3: Full partial correlation, simultaneously controlling for shared effects of all (m = 152) other TFs

- Three correlation based methods to infer TF/target gene pairs
 - \Rightarrow Interactions declared if suitable *p*-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene **Method 2:** Partial correlation, controlling for shared effects of one (m = 1) other TF, across all 152 other TFs **Method 3:** Full partial correlation, simultaneously controlling for shared effects of all (m = 152) other TFs

- In all cases applied Fisher transformation to obtain z-scores
 ⇒ Asymptotic Gaussian distributions for p-values, with P = 445
- Compared inferred graphs to ground-truth network from RegulonDB

Performance comparisons

- ▶ ROC and Precision/Recall curves for Methods 1, 2, and 3
 - \Rightarrow Precision: fraction of predicted links that are true
 - \Rightarrow Recall: fraction of true links that are correctly predicted

Method 1 performs worst, but none is stellar

 \Rightarrow Correlation not strong indicator of regulation in this data

► All methods share a region of high precision, but a very small recall

 \Rightarrow Limitations in number/diversity of profiles [Faith'07]

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work

Learning graphs from smooth signals

Universidad Rey Juan Carlos

Rationale

- Seek graphs on which data admit certain regularities
 - Nearest-neighbor prediction (a.k.a. graph smoothing)
 - Semi-supervised learning
- Many real-world graph signals are smooth
 - Graphs based on similarities among vertex attributes
 - Network formation driven by homophily, proximity in latent space

Learning graphs from smooth signals

Rationale

Seek graphs on which data admit certain regularities

- Nearest-neighbor prediction (a.k.a. graph smoothing)
- Semi-supervised learning
- Many real-world graph signals are smooth
 - Graphs based on similarities among vertex attributes
 - Network formation driven by homophily, proximity in latent space

Problem statement

Given observations $\mathbf{X} := [\mathbf{x}_1, ..., \mathbf{x}_P] \in \mathbb{R}^{N \times P}$, identify a graph G such that signals in \mathbf{X} are smooth on G.

► Criterion: Dirichlet energy on the graph G with Laplacian L
⇒ Search for the GSO S = L such that TV(x) = x^TLx small

$$\mathsf{TV}(\mathbf{X}) = \sum_{p=1}^{P} \mathbf{x}_{p}^{T} \mathsf{L} \mathbf{x}_{p}$$

Formulation and algorithm

Universidad URey Juan Carlos

▶ Noiseless obs. ⇒ Objective: Smoothness + graph regularization [Dong16]

$$\begin{split} \mathbf{L}^* &= \arg\min_{\mathbf{L}} \left\{ \sum_{p=1}^{P} \mathbf{x}_p^T \mathbf{L} \mathbf{x}_p + \frac{\beta}{2} \|\mathbf{L}\|_F^2 \right\} \\ \text{s. to} \quad \text{trace}(\mathbf{L}) = N, \ \mathbf{L} \mathbf{1} = \mathbf{0}, \ L_{ij} = L_{ji} \leq 0, \ i \neq j \end{split}$$

 \Rightarrow Sparsity $\|\boldsymbol{L}\|_1$ redundant due to linear constraints

Formulation and algorithm

Universidad URey Juan Carlos

▶ Noiseless obs. ⇒ Objective: Smoothness + graph regularization [Dong16]

$$\mathbf{L}^* = \arg\min_{\mathbf{L}} \left\{ \sum_{p=1}^{P} \mathbf{x}_p^T \mathbf{L} \mathbf{x}_p + \frac{\beta}{2} \|\mathbf{L}\|_F^2 \right\}$$

s. to trace(**L**) = N, **L1** = **0**, $L_{ij} = L_{ji} \leq 0, i \neq j$

 \Rightarrow Sparsity $\|\boldsymbol{\mathsf{L}}\|_1$ redundant due to linear constraints

▶ Noisy obs. \Rightarrow Objective must include fidelity term [Dong16]

$$\mathbf{L}^* = \arg\min_{\mathbf{L},\mathbf{Y}} \left\{ \|\mathbf{X} - \mathbf{Y}\|_F^2 + \alpha \sum_{p=1}^P \mathbf{y}_p^T \mathbf{L} \mathbf{y}_p + \frac{\beta}{2} \|\mathbf{L}\|_F^2 \right\} \quad \text{s. to } \operatorname{trace}(\mathbf{L}) = N, \dots$$

 \Rightarrow Not jointly convex in L and Y, but bi-convex

Algorithmic approach: alternating minimization (AM), O(N³) cost (S1) Fixed Y: solve for L via interior-point method, ADMM (S2) Fixed L: low-pass graph-filter smoother Y = (I + αL)⁻¹X

Impact of regularizers on sparsity and accuracy

- More edges promoted by increasing β and decreasing α
- In the low noise regime, the ratio β/α determines behavior

Learning a temperature graph in Switzerland

- Learn a graph on which the temperatures vary smoothly
- ► Geographical distance not a good idea ⇒ different altitudes
- Recover altitude partition from spectral clustering
 - \Rightarrow Red (high stations) and blue (low stations) clusters
- k-means applied directly to the temperatures (right) fails

► Smoothness is a deterministic metric and graph regularizers are needed ⇒ Note that $\sum_{p=1}^{P} \mathbf{x}_{p}^{T} \mathbf{L} \mathbf{x}_{p} = \sum_{p=1}^{P} \operatorname{trace}(\mathbf{x}_{p} \mathbf{x}_{p}^{T} \mathbf{L}) = P \operatorname{trace}(\hat{\mathbf{C}}\mathbf{L})$ ⇒ Use as regularizer log det(\mathbf{L}) – $\lambda ||\mathbf{L}||_{1}$ $\mathbf{L}^{*} = \arg \max_{\mathbf{L} \succeq \mathbf{0}, \gamma \ge 0} \left\{ \log \det \mathbf{L} - \operatorname{trace}(\hat{\mathbf{C}}\mathbf{L}) - \lambda ||\mathbf{L}||_{1} \right\}$ s. to $\mathbf{L}\mathbf{1} = \mathbf{0}, \ L_{ij} \le 0, \ i \ne j$

Θ = L GMRF with Laplacian constraints!!

 \Rightarrow KO: L singular (improper GMRF)

 \Rightarrow Use $\Theta = \mathbf{L} + \gamma \mathbf{I} \Rightarrow$ Proper GMRF via diagonal loading [Lake'07]

GMRF with Laplacian constr. favors graphs over which X is smooth
 ⇒ Efficient algorithms, topological constraints [Pavez'17], [Zhao'19]

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work

▶ **Def:** A graph signal **x** is stationary with respect to the shift **S** if and only if $\mathbf{x} = \mathbf{H}\mathbf{w}$, where $\mathbf{H} = \sum_{l=0}^{L-1} h_l \mathbf{S}^l$ and **w** is white.

 \Rightarrow Coro: The covariance matrix $\textbf{C} = \mathbb{E}\left[\textbf{x} \textbf{x}^{\mathcal{T}}\right]$ is a polynomial on S.

Graph learning based on stationarity

Find the sparsest GSO such that **S** can be (approximately) mapped to $\hat{\mathbf{C}} = \frac{1}{P} \mathbf{X} \mathbf{X}^T$ by a polynomial

Observations

- (a) Our approach says mapping $\mathbf{C} \rightarrow \mathbf{S}$ is polynomial (analytic)
- (b) Correlation methods \Rightarrow C = S eigenvalues are kept unchanged
- (c) Precision methods \Rightarrow C = S⁻¹ eigenvalues are inverted
 - Sparsifying entries of **C** or C^{-1} vs sparsest transformation (more ill posed)

Finding **S** from $\mathbf{C} = h_0^2 \mathbf{I} + 2h_0 h_1 \mathbf{S} + (2h_0 h_2 + h_1^2) \mathbf{S}^2$ non-convex but...

- Finding **S** from $\mathbf{C} = h_0^2 \mathbf{I} + 2h_0 h_1 \mathbf{S} + (2h_0 h_2 + h_1^2) \mathbf{S}^2$ non-convex but...
- ▶ Approach 1 [Segarra'16], [Pasdeloup'16]: $[v_1, ..., v_N] := eig(\hat{C})$ and

$$\mathbf{S}^* = \underset{\boldsymbol{\lambda}}{\operatorname{argmin}} \|\mathbf{S}\|_0 \quad \text{ s. to } \quad \mathbf{S} = \sum_{k=1}^N \lambda_k \mathbf{v}_k \mathbf{v}_k^T, \ \mathbf{S} \in \boldsymbol{\mathcal{S}}$$

 \Rightarrow Set \mathcal{S} contains all admissible scaled adjacency (Laplacian) matrices

- Finding **S** from $\mathbf{C} = h_0^2 \mathbf{I} + 2h_0 h_1 \mathbf{S} + (2h_0 h_2 + h_1^2) \mathbf{S}^2$ non-convex but...
- ▶ Approach 1 [Segarra'16], [Pasdeloup'16]: $[v_1, ..., v_N] := eig(\hat{C})$ and

$$\mathbf{S}^* = \underset{\boldsymbol{\lambda}}{\operatorname{argmin}} \|\mathbf{S}\|_0 \quad \text{ s. to } \quad \mathbf{S} = \sum_{k=1}^N \lambda_k \mathbf{v}_k \mathbf{v}_k^T, \ \mathbf{S} \in \boldsymbol{\mathcal{S}}$$

 \Rightarrow Set \mathcal{S} contains all admissible scaled adjacency (Laplacian) matrices

► Approach 2 [Segarra'17]: Use Ĉ directly and

$$\begin{split} \mathbf{S}^* &= \underset{\mathbf{S}}{\operatorname{argmin}} ~ \|\mathbf{S}\|_0 \quad \text{ s. to } ~ \hat{\mathbf{C}}\mathbf{S} = \mathbf{S}\hat{\mathbf{C}}, ~ \mathbf{S} \in \mathcal{S} \\ \end{split}$$

 \Rightarrow Equivalent if \boldsymbol{S} and $\hat{\boldsymbol{C}}$ have non-repeated eigenvalues

• More ill-posed than (partial) correlation nets \Rightarrow Theoretical results for:

- \Rightarrow Identifiability under perfect observations [Segarra'17]
- \Rightarrow Errors in the covariance, incomplete eigenvectors (singular $\hat{\textbf{C}})$
- Recovery rates: Erdős-Rényi varying N and edge probability p
 Adjacency (left), Laplacian (mid), theoretical guarantees (right)
 Works very well in random graphs (also in real datasets)

Universidad Rey Juan Carlos

Comparison with graphical lasso and sparse correlation methods

• Evaluated on 100 realizations of ER graphs with N = 20 and p = 0.2

• Graphical lasso implicitly assumes a filter $\mathbf{H}_1 = (\rho \mathbf{I} + \mathbf{S})^{-1/2}$

 \Rightarrow For this filter spectral templates work, but not as well

► For general diffusion filters **H**₂ spectral templates still work fine

Inferring the structure of a protein

Our method can be used to sparsify a given network

 ⇒ Keep direct and important edges or relations
 ⇒ Discard indirect relations that can be explained by direct ones

 Use eigenvectors V of given network as noisy eigenvectors of S
 Ex: Infer contact between amino-acid residues in BPT1 BOVIN

 ⇒ Use mutual information of amino-acid covariation as input

Network deconvolution assumes a specific filter model [Feizi'13]
 We achieve better performance by being agnostic to this

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work

Assuming C → S endows the problem with a flexible structure
 ⇒ It can be combined with smoothness (TV regularizer)
 ⇒ Graph regularizers for scenarios where # obs. P is limited

$$\max_{\boldsymbol{\Theta} \succeq \mathbf{0}, \mathbf{S}} \left\{ \log \det \boldsymbol{\Theta} - \operatorname{trace}(\hat{\mathbf{C}} \boldsymbol{\Theta}) - \lambda \|\mathbf{S}\|_1 \right\} \quad \text{s. to} \quad \mathbf{S} \boldsymbol{\Theta} = \boldsymbol{\Theta} \mathbf{S}, \ \mathbf{S} \in \mathcal{S}$$

Algorithms and theoretical results in a number of scenarios

- \Rightarrow Non-white inputs giving rise to $C_x = H(S)C_wH(S)$ [Shafipour'18]
- \Rightarrow Directed networks [Shafipour'18]
- \Rightarrow Online streaming signals [Shafipour'20]
- \Rightarrow Multi-relational graphs [Segarra'17, Navarro'20]
- \Rightarrow Hidden/latent nodes [Buciulea'19,Buciulea'21]

Universidad Rey Juan Carlos

▶ In many relevant scenarios not all nodes are observed N = o + h

- \Rightarrow Can the $o \times o$ submatrix of **S** be recovered?
- \Rightarrow Can the full $N \times N$ matrix **S** be recovered (network tomography)?
- \Rightarrow How to modify the optimization?
- \Rightarrow How much does the recovery performance degrade?

Hidden vars: correlation and precision

► Correlation assume direct relation \Rightarrow Trivial to generalize if hidden vars \Rightarrow Find $\hat{\mathbf{C}}_o = \frac{1}{P} \mathbf{X}_o \mathbf{X}_o^T$, set $\hat{\mathbf{S}}_o = \hat{\mathbf{C}}_o \Rightarrow$ Network tomo not feasible

► Precision challenging [Chandrasekaran'12], key when
$$\mathbf{S} = \mathbf{C}^{-1}$$
:
 $\Rightarrow (\mathbf{C}_o)^{-1} = \mathbf{S}_o - \mathbf{R}$ with $\mathbf{R} := \mathbf{S}_{oh}(\mathbf{S}_h)^{-1}\mathbf{S}_{ho}$ having rank h
 $\hat{\mathbf{S}}_o = \arg\max_{\mathbf{S}_o - \mathbf{R} \succeq 0, \mathbf{R} \succeq 0} \log \det(\mathbf{S}_o - \mathbf{R}) - \operatorname{trace}(\hat{\mathbf{C}}_o(\mathbf{S}_o - \mathbf{R})) - \lambda \|\mathbf{S}_o\|_1 + \alpha \|\mathbf{R}\|$

Universidad Rey Juan Carlos

Two approaches if fully observed, what if hidden nodes?

 \Rightarrow Estimation of eigenvectors at observed nodes very challenging

 \Rightarrow What about $\hat{\mathbf{C}}\mathbf{S} = \mathbf{S}\hat{\mathbf{C}}$?

Hidden vars: polynomial covariances

Two approaches if fully observed, what if hidden nodes?

- \Rightarrow Estimation of eigenvectors at observed nodes very challenging
- \Rightarrow What about $\hat{\mathbf{C}}\mathbf{S} = \mathbf{S}\hat{\mathbf{C}}$?

$$\hat{\mathbf{C}}_{o}\mathbf{S}_{o}+\hat{\mathbf{C}}_{oh}\mathbf{S}_{ho}=\mathbf{S}_{o}\hat{\mathbf{C}}_{o}+\mathbf{S}_{oh}\hat{\mathbf{C}}_{ho}$$

Leverage structure:

$$\operatorname{rank}(\hat{\mathbf{C}}_{oh}\mathbf{S}_{ho}) = h \ll o$$
 $\hat{\mathbf{C}}_{oh}\mathbf{S}_{ho} = (\mathbf{S}_{oh}\hat{\mathbf{C}}_{ho})^{T}$ $\|\mathbf{S}_{ho}\|_{0} \ll ho$

Hidden vars: recovery from polynomial covars

Approach I: Convex relaxation

$$\mathbf{S}_{o}^{*} = \underset{\mathbf{R}, \mathbf{S}_{o} \in \mathcal{S}_{o}}{\operatorname{argmin}} \|\mathbf{S}_{o}\|_{1} + \eta \|\mathbf{R}\|_{*} \quad \text{ s. to } \quad \hat{\mathbf{C}}_{o}\mathbf{S}_{o} + \mathbf{R} = \mathbf{S}_{o}\hat{\mathbf{C}}_{o} + \mathbf{R}^{T}$$

 \Rightarrow Re-weighted versions for ℓ_0 and nuclear norms are prudent

Hidden vars: recovery from polynomial covars

Approach I: Convex relaxation

$$\mathbf{S}_{o}^{*} = \underset{\mathbf{R}, \mathbf{S}_{o} \in \mathcal{S}_{o}}{\operatorname{argmin}} \|\mathbf{S}_{o}\|_{1} + \eta \|\mathbf{R}\|_{*} \quad \text{ s. to } \quad \hat{\mathbf{C}}_{o}\mathbf{S}_{o} + \mathbf{R} = \mathbf{S}_{o}\hat{\mathbf{C}}_{o} + \mathbf{R}^{T}$$

 \Rightarrow Re-weighted versions for ℓ_0 and nuclear norms are prudent

Approach II: Additional structure, but convexity sacrificed

$$\begin{split} \mathbf{S}_{o}^{*} &= \underset{\mathbf{C}_{oh} \in \mathcal{C}_{oh}, \ \mathbf{S}_{oh} \in \mathcal{S}_{oh} \ \mathbf{S}_{o} \in \mathcal{S}_{o}}{\operatorname{argmin}} \|\mathbf{S}_{o}\|_{1} + \alpha \|\mathbf{S}_{oh}\|_{1} \\ \text{s. to} \quad \hat{\mathbf{C}}_{o} \mathbf{S}_{o} + \hat{\mathbf{C}}_{oh} \mathbf{S}_{ho} &= \mathbf{S}_{o} \hat{\mathbf{C}}_{o} + \mathbf{S}_{oh} \hat{\mathbf{C}}_{ho} \end{split}$$

 $\Rightarrow \text{ Alternating min, priors on } C_{oh} \text{ and } S_{oh} \text{ can be accommodated} \\\Rightarrow S_{oh} \text{ as byproduct (network tomography)}$

Gaining insights

• Recovery with N = 20, o = 19, h = 1 for an ER graph

 \Rightarrow Non-convex formulation does a better job unveiling structure

What if h varies? Sensitivity to particular nodes?...

Urban mobility patterns via non-white diffusions

- Unveiling urban mobility patterns from Uber pickups in NYC
 - \Rightarrow Times and locations: 1-1-15 to 6-29-15 and 263 locations (N = 30)
 - \Rightarrow https://github.com/fivethirtyeight/uber-tlc-foil-response
- ► Input/output aggregated pickups 6am to 11am, 3pm to 8pm (x=Hw)
 - \Rightarrow M = 2 graph processes: m = 1 weekday, m = 2 weekends

- ► Most edges connect Manhattan with the other boroughs ⇒ Uber used to commute to/from suburbs
- Airports (Kennedy, Newark and LaGuardia) high degree nodes

- ▶ 2 US senators per state (N = 50) for 3 congresses (113th, 114th, 115th)
- Nodes are states, graph signals as congressional votes:

$$x_i = s_i^1 + s_i^2, \quad s_i^n = \begin{cases} 1, & yea \\ -1, & nay \\ 0, & ow \end{cases}$$

- True 3 graphs: Separately infer each graph with all available votes (657 for 113th, 502 for 114th, 599 for 115th)
- Compare separate and joint inference to true graphs for increasing number of randomly selected signals n ∈ {50, 100, · · · , 350} for ten trials of randomized subsets
- Joint inference assumes signals are stationary on each graph
 - \Rightarrow Graphs $\{\boldsymbol{S}_1, \boldsymbol{S}_2, \boldsymbol{S}_3\}$ are relatively close
 - \Rightarrow Promotes smoothness via TV(X)

For most cases, joint inference outperforms separate inference:

Joint Inference for US Senate Networks

True graph

Separately inferred

Jointly inferred

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work

Closing remarks

- ▶ How to use the information in $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_P]$ to identify $G(\mathcal{V}, \mathcal{E})$
 - \Rightarrow Focus on static and undirected graphs
 - \Rightarrow GSP offers some novel insights and tools
- Focus of the talk
 - \Rightarrow Links with classical methods, intuition and problem formulation
 - \Rightarrow Not on algorithms and theoretical results (happy to discuss)
 - \Rightarrow Polynomial mappings (i.e., stationarity) as a flexible model
- Emerging topic areas we did not cover
 - \Rightarrow Network tomography
 - \Rightarrow Directed graphs and causal structure identification
 - \Rightarrow Dynamic networks and multi-layer graphs
 - \Rightarrow Nonlinear models of interaction
 - \Rightarrow Many excellent works we did not mention (cf. SPMag)!

Universidad Rey Juan Carlos

Relevance to applications: How to choose a graph learning method?

- \Rightarrow Data itself as well as *P*, *N*, noise...
- \Rightarrow Dependent also on the SP/ML task?
- Additional research directions
 - \Rightarrow Discrete and heterogeneous signals
 - \Rightarrow Tractable graph priors, Bayesian methods
 - \Rightarrow Non-homogeneous nodes

THANKS!

*Feel free to ask for the papers and/or the slides [Segarra et al. "Network topology inference from spectral templates" IEEE TSIPN 2017.]