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Network Science analytics —

Rey Juan Carlos

Online social media Internet Clean energy and grid analytics

> Network as graph G = (V, £): encode pairwise relationships

» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
= Use G to study graph signals, data associated with nodes in ¥V

» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

%

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations 2/4



Motivating examples — Graph signals Unversiad

Rey Juan Carlos

» Goal: Process, analyze and learn from graph signals
= As.: Signal properties related to topology of G (e.g., locality)

» Graph SP: broaden classical SP to graph signals [Shuman’13,Sandryhaila’13]
= Main actors: nodal signals x, y, w and graph shift operator S
= Algorithms that fruitfully leverage this relational structure

Interpolate a brain signal Compress a signal in Localize the Smooth an observed
from local observations an irregular domain source of a rumor network profile
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> GSP leverages S to define: Graph Fourier Transform and Graph Filters
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Network Data Analysis via Graph SP —

Rey Juan Carlos

» Graph G with N nodes and adjacency A X’ X‘
= Aj = Proximity between / and j "
» Define a signal x € R" on top of the graph ° °

X3 X5

= x; = Signal value at node i
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Network Data Analysis via Graph SP —

Rey Juan Carlos

» Graph G with N nodes and adjacency A X’ X‘
— A; = Proximity between i and j x'
» Define a signal x € R" on top of the graph

= x; = Signal value at node i

> Associated with G is the graph-shift operator S = VAV~ ¢ RNVxN
= S;j=0fori#jand (i,j) €& (local structure in G)
= Ex: A and Laplacian L = D — A matrices
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Network Data Analysis via Graph SP —

Rey Juan Carlos

» Graph G with N nodes and adjacency A ” X‘

— A; = Proximity between i and j n

» Define a signal x € R" on top of the graph

= x; = Signal value at node i

> Associated with G is the graph-shift operator S = VAV~ ¢ RNVxN
= S;j=0fori#jand (i,j) €& (local structure in G)
= Ex: A and Laplacian L = D — A matrices

» Graph filters — Matrix polynomials: H = Z;V:Bl hS' = Vdiag(h)V1
» Graph SP — Exploit structure encoded in S to process x

» Take the reverse path. How to use GSP to infer the graph topology?
= Talk's key GSP concepts: graph signal smoothness and stationarity
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Smoothness and Laplacian frequencies U

Rey Juan Carlos

» Total variation of signal x with respect toL=D — A = BB”

N
TV(x) =x"Lx = Z Ai(xi — x)?
ij=1j>i
=- Smoothness measure on the graph G
> For L eigenvecs V=|vg,...,vy_1] = TV(vk)=Xc = TV(1)=0
= Ao=0 and can view A\g =0 < --- < A\y_; as frequencies
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Smoothness and Laplacian frequencies U

Rey Juan Carlos

» Total variation of signal x with respect toL=D — A = BB”

N
TV(x) =x"Lx = Z Ai(xi — x)?
ij=Lj>i
=- Smoothness measure on the graph G

> For L eigenvecs V=|vg,...,vy_1] = TV(vk)=Xc = TV(1)=0
= Ao=0 and can view A\g =0 < --- < A\y_; as frequencies

> Ex: gene network, N=10, k=0, k=1, k=9
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Graph stationarity Unversiad

Rey Juan Carlos

» Random signals over a graph G = (Statistical) Properties related to G
= In time, stationarity is a pervasive, tractable and fruitful model

Stationary graph signal

Def: A graph signal x is stationary with respect to the shift S if and
only if x = Hw, where H = 37" 1S/ and w is white.

e e Rl
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Graph stationarity Unversiad

Rey Juan Carlos

» Random signals over a graph G = (Statistical) Properties related to G
= In time, stationarity is a pervasive, tractable and fruitful model

Stationary graph signal

Def: A graph signal x is stationary with respect to the shift S if and
only if x = Hw, where H = 37" 1S/ and w is white.

e e Rl

» The covariance matrix of the stationary signal x is a polynomial on S

C.=E [Hw(Hw)"] = HE [ww'| H” = H? = hol+2hoh S+(2hoho+h3)S>...

> Key: C, and S simultaneously diagonalizable
= eigenvecs(Cy)=eigenvecs(S) AND C,S=SC,
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What is this talk about? e

Rey Juan Carlos

» Learning graphs from nodal observations
» Fundamental problem in statistics (later)

> Key in neuroscience [Sporns’'10]

= Functional network from fMRI signals
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What is this talk about? e

Rey Juan Carlos

» Learning graphs from nodal observations
» Fundamental problem in statistics (later)

> Key in neuroscience [Sporns’'10]

= Functional network from fMRI signals

» Most GSP works: how known graph S affects signals and filters

» Here, reverse path: how to use GSP to infer the graph topology?

A. G. Marques

>

vvyyvyy

Graphical models [Egilmez et al’'16], [Rabbat'17], [Kumar et al'19], ...
Smooth signals [Dong et al'15], [Kalofolias'16], [Sardellitti et al'17], ...
Graph filtering models [Shafipour et al’'17], [Thanou et al'17], ...
Stationary signals [Pasdeloup et al'15], [Segarra et al'16], ...

Directed graphs [Mei-Moura'15], [Shen et al'16], ...
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Connecting the dots Unversiad

Rey Juan Carlos

» Recent tutorials on learning graphs from data
> |EEE Signal Processing Magazine and Proceedings of the IEEE

% Topology Identification and
Learning Over Graphs:
2 g 27" Accounting for Nonlinearities
@*‘( s Learning / and Dynamics
¥ Graphs ¥4
From Data  ©

A signol represeaion pespacive

» |EEE Trans. on Signal and Information Processing over Networks
> Special issue on Network Topology Inference (2020)
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Network topology inference problems Unversiad

Rey Juan Carlos

» Q: If G (or a portion thereof) is unobserved, can we infer it from data?

» Formulate as a statistical inference task, i.e. given
> Signal measurements x; at some or all vertices i € V

> Indicators yj; of edge status for some vertex pairs {i,j} € Vﬁl
> A collection G of candidate graphs G

Goal: infer the topology of the network graph G(V,€)

» Bring to bear existing statistical concepts and tools

= Study identifiability, consistency, robustness, complexity

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Network topology inference problems Unversiad

Rey Juan Carlos

» Q: If G (or a portion thereof) is unobserved, can we infer it from data?

» Formulate as a statistical inference task, i.e. given
> Signal measurements x; at some or all vertices i € V
> Indicators yj; of edge status for some vertex pairs {i,j} € Vﬁl
» A collection G of candidate graphs G

Goal: infer the topology of the network graph G(V,€)

» Bring to bear existing statistical concepts and tools

= Study identifiability, consistency, robustness, complexity

» Three canonical network topology inference problems [Kolaczyk'09]
(i) Link prediction
(ii) Association network inference
(iii) Tomographic network topology inference
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Link prediction T—

Rey Juan Carlos

Original graph Link prediction

> Edge status is only observed for some subset of pairs V(()il cv®@
> Goal: predict edge status for all other pairs, i.e., V,(j-ls =V \Vc(,il

» Approach address the problem leveraging:

a) topological info only (nodal features) and/or
b) nodal signals x = [x1,...,xn]"
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Association network inference —

Rey Juan Carlos

°
°
®
°
®
Original graph Association network
inference

> Suppose we only observe the graph signal x = [x,...,xy]; and

» Assume (i, /) defined by nontrivial ‘level of association' among x;, x;

> Goal: predict edge status for all vertex pairs V(2
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Tomographic network topology inference Uriversiad

Rey Juan Carlos

°
o
o
]
°
Original graph Tomographic
inference

» Suppose we only observe x; for vertices i C V in the ‘perimeter’ of G

» Goal: predict edge and vertex status in the ‘interior’ of G
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Connecting the dots: Statistical methods —

Rey Juan Carlos

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work
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Association network inference Universidad

Rey Juan Carlos

Learning a graph from nodal observations

“Given a collection X := [xq, ..., xp] € RV*P of graph signal observations
supported on the unknown graph G(V, &, W) find an optimal S”

Genes

Experiments

» |ll-posed problem: optimality, priors, regularizations
» Most classical approaches focus on pairwise similarities
= User-defined similarity sim(/, j) = f(x;, X;) specifies edges (i,j) € £
» More recent approaches look at G as a whole: mapping from X to S
» We start by reviewing classical approaches in statistics
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Correlation networks e

Rey Juan Carlos

» Pearson product-moment correlation as sim between vertex pairs
cov[x;, xj]

sinlid) = 0 = e e ol

» Inference of edges £ < Inference of non-zero correlations

iLhjey

= Typically approached as a testing problem: Hy: pjj=0 vs. Hi: p;j#0

A. G. Marques Connecting the dots: Leve SP to learn graphs from nodal observations



Correlation networks e

Rey Juan Carlos

» Pearson product-moment correlation as sim between vertex pairs
cov[x;, xj]

sinlid) = 0 = e e ol

» Inference of edges £ < Inference of non-zero correlations

iLhjey

= Typically approached as a testing problem: Hy: pjj=0 vs. Hi: p;j#0
> Find sample covariance € = XXT, then p; = C;/1/ Ci G
= Edge exists if: 0.5log (”Pv) >, with Pra = o [Kol'09]

» Non-zero entries of the GSO S:
= SU = ﬁ,‘j, 5,_, = C,:,', S,_, = 1{H1}7 S'J = f(ﬁu),

= Sparsification of the covariance / correlation matrix
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Partial correlations e

Rey Juan Carlos

» Use correlations carefully: ‘correlation does not imply causation’
> Vertices /,j € V may have high pj; because they influence each other

» But pj; could be high if both i,/ influenced by a third vertex k € V

= Correlation networks may declare edges due to confounders

VA SN

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Partial correlations e

Rey Juan Carlos

» Use correlations carefully: ‘correlation does not imply causation’
> Vertices /,j € V may have high pj; because they influence each other

» But pj; could be high if both i,/ influenced by a third vertex k € V

= Correlation networks may declare edges due to confounders

VA SN

» Partial correlations better capture direct influence among vertices

» For i,j € V consider latent vertices V_; = V \ {/,j}, then partial correlation
of x; and x;, adjusting for X_j; = [X1, .., Xi—1, Xit1, -+, Xi—1, Xj+1, -, Xn] | IS

cov[x;, Xj | x_jl
Jvar B g var b ]

» Q: How do we obtain these partial correlations?

Pij|v_; = ) Iv./ eV
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Partial correlations and covariance selection e

Rey Juan Carlos

» Def: the precision matrix of x is @ := C~!, with C being its covariance

» Key result: The partial correlations can be expressed as

Oy

PijlV—y = _\/Weﬂ

» Edges & in the graph G < Non-zero entries in ©

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Partial correlations and covariance selection e

Rey Juan Carlos

» Def: the precision matrix of x is @ := C~!, with C being its covariance

» Key result: The partial correlations can be expressed as

Oy

Pijlv_y = = /©i0;

» Edges & in the graph G < Non-zero entries in ©
= Inferring G from X known as covariance selection [Dempster'74]

= Classical methods are ‘network-agnostic,’ and effectively test

Ho : pjjiv_; =0 vs. Hi:pyy_, #0

= Often not scalable, and P < N so estimation of € challenging

» Under Gaussianity p;y_, =0 iff x; and x; are conditionally independent
= Also known as Gaussian Markov random field (GMRF)

=- A popular particular instance of partial correlation networks

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Graphical Lasso (GL)

Universidad
Rey Juan Carlos

> Sparsity-regularized maximum-likelihood estimator of ® [Yuan'07]

A. G. Marques

A

O =arg rg;g {Iog det ©® — trace(CO) — )\||@||1}

= Effective when P < N, encourages interpretable models

= Scalable solvers using coordinate-descent [Friedman’'08]

Connecting the dots: Leveraging GSP to learn graphs from nodal observations




Graphical Lasso —

Rey Juan Carlos

> Sparsity-regularized maximum-likelihood estimator of ® [Yuan'07]

A

O =arg rg;g {Iog det ©® — trace(CO) — )\||@||1}

= Effective when P < N, encourages interpretable models

= Scalable solvers using coordinate-descent [Friedman’'08]

» Performance guarantee: Graphical lasso with A = 24/ '°%,N satisfies

A d? . log N
16 — @2 < Imax 08 IV

b w.h.p.

= Ground-truth @y, maximum nodal degree dmax
» Support consistency for P = Q(d?,, log N) [Ravikumar'11]

» Partial correlation / GL: estimate GSO S sparsifying C*
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Case study: Inferring gene-regulatory interactions |y umess

Rey Juan Carlos

» Genes are segments of DNA encoding information about cell functions

» Such information used in the expression of genes
= Creation of biochemical products, i.e., RNA or proteins

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Case study: Inferring gene-regulatory interactions |y umess

Rey Juan Carlos

» Genes are segments of DNA encoding information about cell functions

» Such information used in the expression of genes

= Creation of biochemical products, i.e., RNA or proteins

> Regulation of a gene refers to the control of its expression
Ex: regulation exerted during transcription, copy of DNA to RNA
= Controlling genes are transcription factors (TFs)
= Controlled genes are termed targets

= Regulation type: activation or repression
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study: Inferring gene-regulatory interactions y v

Rey Juan Carlos

» Genes are segments of DNA encoding information about cell functions

» Such information used in the expression of genes
= Creation of biochemical products, i.e., RNA or proteins

> Regulation of a gene refers to the control of its expression
Ex: regulation exerted during transcription, copy of DNA to RNA
= Controlling genes are transcription factors (TFs)
= Controlled genes are termed targets

= Regulation type: activation or repression

» Regulatory interactions among genes basic to the workings of organisms
= Inference of interactions — Finding TF /target gene pairs

» Such relational information summarized in gene-regulatory networks

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Regulatory interactions among E. coli genes Unversidad

Rey Juan Carlos

» Use microarray data and correlation methods to infer TF /target pairs

Genes

Experiments

» Dataset: relative log expression RNA levels, for genes in E. coli
» 4,345 genes measured under 445 different experimental conditions

» Ground truth: 153 TFs, and TF/target pairs from database RegulonDB

A. G. Marques Connecting the dots: Leve SP to learn graphs from nodal observations



Methods to infer TF /target gene pairs —

Rey Juan Carlos

» Three correlation based methods to infer TF /target gene pairs
= Interactions declared if suitable p-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene

Method 2: Partial correlation, controlling for shared effects of one
(m = 1) other TF, across all 152 other TFs

Method 3: Full partial correlation, simultaneously controlling for
shared effects of all (m = 152) other TFs

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Methods to infer TF /target gene pairs —

Rey Juan Carlos

» Three correlation based methods to infer TF /target gene pairs
= Interactions declared if suitable p-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene

Method 2: Partial correlation, controlling for shared effects of one
(m = 1) other TF, across all 152 other TFs

Method 3: Full partial correlation, simultaneously controlling for
shared effects of all (m = 152) other TFs

» In all cases applied Fisher transformation to obtain z-scores
= Asymptotic Gaussian distributions for p-values, with P = 445

» Compared inferred graphs to ground-truth network from RegulonDB
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Performance comparisons T—

Rey Juan Carlos

» ROC and Precision/Recall curves for Methods 1, 2, and 3
= Precision: fraction of predicted links that are true

= Recall: fraction of true links that are correctly predicted
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False Positive Rate Recall

» Method 1 performs worst, but none is stellar
= Correlation not strong indicator of regulation in this data

» All methods share a region of high precision, but a very small recall
= Limitations in number/diversity of profiles [Faith'07]
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Connecting the dots: GSP methods —

Rey Juan Carlos

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work
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Learning graphs from smooth signals Unversiad

Rey Juan Carlos

Rationale
» Seek graphs on which data admit certain regularities
» Nearest-neighbor prediction
> Semi-supervised learning
» Many real-world graph signals are smooth
» Graphs based on similarities among vertex attributes
> Network formation driven by homophily, proximity in latent space

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Learning graphs from smooth signals Unversiad

Rey Juan Carlos

Rationale
» Seek graphs on which data admit certain regularities
» Nearest-neighbor prediction
> Semi-supervised learning
» Many real-world graph signals are smooth
» Graphs based on similarities among vertex attributes
» Network formation driven by homophily, proximity in latent space
Problem statement

Given observations X := [xq,...,xp] € RN*P identify a graph G
such that signals in X are smooth on G.

» Criterion: Dirichlet energy on the graph G with Laplacian L
= Search for the GSO S = L such that TV(x) = x"Lx small

P
TV(X) =) x)Lx,
p=1

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Formulation and algorithm —

Rey Juan Carlos

> Noiseless obs. = Objective: Smoothness + graph regularization [Dong16]

P
. . B
L* = arg min {ZXPTLX,, + §||L||%_-}
p=1
s.to trace(L)=N,L1=0,L;=L; <0,i#}j

= Sparsity ||L||; redundant due to linear constraints

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Formulation and algorithm —

Rey Juan Carlos

> Noiseless obs. = Objective: Smoothness + graph regularization [Dong16]
& 8
L* = arg mLin { x] Lx, + EHLH%—}
p=1
s.to trace(L)=N,L1=0,L;=L; <0,i#}j

= Sparsity ||L||; redundant due to linear constraints

> Noisy obs. = Objective must include fidelity term [Dongl6]

P
* . 2 T ﬁ 2 _
L* = arg min {||X -Y&+ azlyp Ly, + §||L||F} s. to trace(L) =N, ...
p=
= Not jointly convex in L and Y, but bi-convex

» Algorithmic approach: alternating minimization (AM), O(N3) cost

(S1) Fixed Y: solve for L via interior-point method, ADMM
(S2) Fixed L: low-pass graph-filter smoother Y = (I +aL)™'X

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Impact of regularizers on sparsity and accuracy —

Rey Juan Carlos

» Generate multiple signals on a synthetic Erd6s-Rényi graph

» Recover the graph for different values of o and 8

» More edges promoted by increasing S and decreasing «

» In the low noise regime, the ratio 3/« determines behavior
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Learning a temperature graph in Switzerland

A. G. Marques

89 stations measuring monthly temperatures (1981-2010) [Meteoswiss]
Learn a graph on which the temperatures vary smoothly
Geographical distance not a good idea =- different altitudes

Recover altitude partition from spectral clustering

= Red (high stations) and blue (low stations) clusters
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Graph smoothness meets GMRFs —

Rey Juan Carlos

» Smoothness is a deterministic metric and graph regularizers are needed
= Note that pr=1 x]Lx, = Z:::l trace(xpx] L) = Ptrace(CL)
= Use as regularizer logdet(L) — A||L||1

L* = arg max {Iog det L — trace(€L) — )\||L||1}

L>=0,4>0

s.toll=0, L; <0, i#

» O = L GMRF with Laplacian constraints!!

= KO: L singular (improper GMRF)

= Use ® = L+l = Proper GMRF via diagonal loading [Lake'07]
» GMRF with Laplacian constr. favors graphs over which X is smooth

= Efficient algorithms, topological constraints [Pavez'17], [Zhao'19]
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Connecting the dots: GSP methods —

Rey Juan Carlos

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Learning graphs from stationary graph signals Uriversiad

Rey Juan Carlos

> Def: A graph signal x is stationary with respect to the shift S if and only
if x = Hw, where H = Y21 1S’ and w is white.

= Coro: The covariance matrix C=E [xxT] is a polynomial on S.

Graph learning based on stationarity

Find the sparsest GSO such that S can be (approximately) mapped to
C= %XXT by a polynomial

Observations
(a) Our approach says mapping C — S is polynomial (analytic)
(b) Correlation methods = C =S eigenvalues are kept unchanged

(c) Precision methods = C = S~ eigenvalues are inverted

» Sparsifying entries of C or C~! vs sparsest transformation (more ill posed)

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations 30/48



Graph recovery from polynomial covariances T—

Rey Juan Carlos

» Finding S from C = h2l + 2hoh1S + (2hoha + h?)S? non-convex but...

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Graph recovery from polynomial covariances Unversiad

Rey Juan Carlos

» Finding S from C = h2l + 2hoh1S + (2hoha + h?)S? non-convex but...
> Approach 1 [Segarra’16],[Pasdeloup’16]: [vi, ..., vy] := eig(C) and

N
S* =argmin ||Sl[p s.to S= Z)\kvkva, Ses
A
k=1

= Set S contains all admissible scaled adjacency (Laplacian) matrices

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Graph recovery from polynomial covariances Unversiad

Rey Juan Carlos

» Finding S from C = h2l + 2hoh1S + (2hoha + h?)S? non-convex but...
> Approach 1 [Segarra’16],[Pasdeloup’16]: [vi, ..., vy] := eig(C) and

N
S* =argmin ||Sl[p s.to S= Z)\kvkv[, Ses
A
k=1

= Set S contains all admissible scaled adjacency (Laplacian) matrices

» Approach 2 [Segarra’17]: Use C directly and

S* =argmin |S|p s. to €S=SC, Se&§
s

= Equivalent if S and € have non-repeated eigenvalues

A. G. Marques Connecting the dots: Leveraging GSP to learn graphs from nodal observations



Polynomial covariances in random graphs —

Rey Juan Carlos

> More ill-posed than (partial) correlation nets = Theoretical results for:
= ldentifiability under perfect observations [Segarra'l7]
= Errors in the covariance, incomplete eigenvectors (singular é)

» Recovery rates: Erdés-Rényi varying N and edge probability p
= Adjacency (left), Laplacian (mid), theoretical guarantees (right)
= Works very well in random graphs (also in real datasets)
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Performance comparisons T—

Rey Juan Carlos

» Comparison with graphical lasso and sparse correlation methods
» Evaluated on 100 realizations of ER graphs with N =20 and p = 0.2
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Number of observations

> Graphical lasso implicitly assumes a filter Hy = (pl + S) /2

= For this filter spectral templates work, but not as well

» For general diffusion filters H, spectral templates still work fine
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Inferring the structure of a protein —

Rey Juan Carlos

» Our method can be used to sparsify a given network
= Keep direct and important edges or relations

= Discard indirect relations that can be explained by direct ones
> Use eigenvectors V of given network as noisy eigenvectors of S

Ex: Infer contact between amino-acid residues in BPT1 BOVIN

= Use mutual information of amino-acid covariation as input

015 2 2 W B w0 4 8

Ground truth Mutual info. Network deconv. Our approach

» Network deconvolution assumes a specific filter model [Feizi'13]

= We achieve better performance by being agnostic to this
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Stationarity-based generalizations Unversdn

Rey Juan Carlos

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work
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Stationarity as an overreaching model T

Rey Juan Carlos

» Assuming C — S endows the problem with a flexible structure
= It can be combined with smoothness (TV regularizer)
=- Graph regularizers for scenarios where # obs. P is limited

max {Iogdet@ — trace(€O) — >\||S||1} s.to S@=0S,S¢S
» Algorithms and theoretical results in a number of scenarios
= Non-white inputs giving rise to C, = H(S)C,,H(S) [Shafipour'18]
= Directed networks [Shafipour'18]
= Online streaming signals [Shafipour'20]
= Multi-relational graphs [Segarra'17,Navarro'20]
= Hidden/latent nodes [Buciulea'19,Buciulea’21]
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The case of hidden vars. (latent nodes)

Universidad
Rey Juan Carlos

» In many relevant scenarios not all nodes are observed N =0+ h

= Can the o0 x o submatrix of S be recovered?

= Can the full N x N matrix S be recovered (network tomography)?
= How to modify the optimization?

= How much does the recovery performance degrade?

o ®4 L e g 4 .
® ) °® 3

.0 0. .o ‘o. A“is}

o=11 h= 0o=10,h=1

0=10,h=1

A. G. Marques
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Hidden vars: correlation and precision Uit

» Assume for simplicity observed nodes are the first h ones

Observed  Hidden Ohse‘rved Hidden
| )

PoATISq()

TOPPTH

> Correlation assume direct relation = Trivial to generalize if hidden vars
= Find C, = FXoX], set S, = €, = Network tomo not feasible

» Precision challenging [Chandrasekaran'12], key when S = C~1:
= (C,)"1 =S, — R with R := S,4(S4) 1Sk, having rank h

A

S, = arg_max log det(S,—R)—trace(Co(So—R))—A||So|l1+a||R]||«
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Hidden vars: polynomial covariances Universiad

Rey Juan Carlos

» Two approaches if fully observed, what if hidden nodes?
= Estimation of eigenvectors at observed nodes very challenging
= What about CS = SC ?
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Hidden vars: polynomial covariances Universiad

Rey Juan Carlos

» Two approaches if fully observed, what if hidden nodes?
= Estimation of eigenvectors at observed nodes very challenging
= What about CS = SC ?

éoso + éohsho = Soéo + Soh(,\:ho

> Leverage structure:

rank(Cthho) =h<o éohsho = (sohého)T ”ShO”O < ho
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Hidden vars: recovery from polynomial covars —

Rey Juan Carlos

» Approach |: Convex relaxation

S: = argmin ||Sofi + 7Rl s. to €,So+R=5,C,+R"

FISE

= Re-weighted versions for £y, and nuclear norms are prudent
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Hidden vars: recovery from polynomial covars —

Rey Juan Carlos

» Approach |: Convex relaxation

S: = argmin ||Sofi + 7Rl s. to €,So+R=5,C,+R"

FISE

= Re-weighted versions for £y, and nuclear norms are prudent

» Approach Il: Additional structure, but convexity sacrificed

S, = argmin [Soll1 + al|Sonllx
CthCohy Soh€Soh So€ESo

s. to éoSo + éohsho = Soéo + Sohého

= Alternating min, priors on C,, and S, can be accommodated

= S, as byproduct (network tomography)
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Gaining insights

» Recovery with N =20, o =19, h =1 for an ER graph

5 10 15 10 15
(b) So LowRank (c) So Rew. + Fact.

5 10 15 5 10 15 5 10 15
(d) R True (e) R LowRank (f) R Rew. + Fact.

= Non-convex formulation does a better job unveiling structure

» What if h varies? Sensitivity to particular nodes?...
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Urban mobility patterns via non-white diffusions —

Rey Juan Carlos

» Unveiling urban mobility patterns from Uber pickups in NYC
= Times and locations: 1-1-15 to 6-29-15 and 263 locations (N = 30)
= https://github.com/fivethirtyeight/uber-tlc-foil-response

> Input/output aggregated pickups 6am to 11am, 3pm to 8pm (x=Hw)
= M = 2 graph processes: m = 1 weekday, m = 2 weekends

.

Wosand® 5 ergionood [l
o o ]

zzzzzzzzzz

» Most edges connect
Manhattan with the other
boroughs =- Uber used to
commute to/from suburbs

> Airports (Kennedy, Newark
and LaGuardia) high
degree nodes
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Joint Inference for US Senate Networks Uniersdad

Rey Juan Carlos

» 2 US senators per state (N = 50) for 3 congresses (113th, 114th, 115th)
» Nodes are states, graph signals as congressional votes:

1, yea

1, 2
x;=s +s, s'=<-1, nay
0, ow

> True 3 graphs: Separately infer each graph with all available votes
(657 for 113th, 502 for 114th, 599 for 115th)

» Compare separate and joint inference to true graphs for increasing
number of randomly selected signals n € {50,100, - - - ,350} for ten
trials of randomized subsets

» Joint inference assumes signals are stationary on each graph
= Graphs {S1,S2,S3} are relatively close
= Promotes smoothness via TV/(X)
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Joint Inference for US Senate Networks Uniersdad

Rey Juan Carlos

For most cases, joint inference outperforms separate inference:

o
®

o
o

k|-o- Congress 113 Joint 3
—=—Congress 113 Separate
< Congress 114 Joint
F|—=—Congress 114 Separate 4
o--Congress 115 Joint
—s=— Congress 115 Separate

Recovery error
o
~

o
)

0
50 100 150 200 250 300 350
Nr. of signals observed
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Joint Inference for US Senate Networks Unersdad

Rey Juan Carlos

True graph Separately inferred Jointly inferred
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Connecting the dots: Wrapping up Unversidad

Rey Juan Carlos

Preliminaries and problem statement

Statistical methods for network topology inference

GSP methods for network topology inference: smoothness

GSP methods for network topology inference: stationarity

Stationarity as an overreaching model

Conclusions and future lines of work
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Closing remarks Unversiad

Rey Juan Carlos

> How to use the information in X = [xq,...,xp] to identify G(V, &)
= Focus on static and undirected graphs

= GSP offers some novel insights and tools

» Focus of the talk
= Links with classical methods, intuition and problem formulation
= Not on algorithms and theoretical results (happy to discuss)

= Polynomial mappings (i.e., stationarity) as a flexible model

» Emerging topic areas we did not cover
= Network tomography
= Directed graphs and causal structure identification
= Dynamic networks and multi-layer graphs
= Nonlinear models of interaction
= Many excellent works we did not mention (cf. SPMag)!
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Some open research directions Universidd

Rey Juan Carlos

» Relevance to applications: How to choose a graph learning method?
= Data itself as well as P, N, noise...
= Dependent also on the SP/ML task?

» Additional research directions
= Discrete and heterogeneous signals
= Tractable graph priors, Bayesian methods
= Non-homogeneous nodes

THANKS!

*Feel free to ask for the papers and/or the slides

[Segarra et al. “Network topology inference from spectral templates” IEEE TSIPN 2017.]
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